Citation: Dario Mazzoleni, Benedetta Pellacci. Calculus of variations and nonlinear analysis: advances and applications[J]. Mathematics in Engineering, 2023, 5(3): 1-4. doi: 10.3934/mine.2023059
[1] | G. Ascione, D. Castorina, G. Catino, C. Mantegazza, A matrix Harnack inequality for semilinear heat equations, Mathematics in Engineering, 5 (2023), 1–15. https://doi.org/10.3934/mine.2023003 doi: 10.3934/mine.2023003 |
[2] | A. Attiogbe, M. M. Fall, E. H. A. Thiam, Nonlocal diffusion of smooth sets, Mathematics in Engineering, 4 (2022), 1–22. https://doi.org/10.3934/mine.2022009 doi: 10.3934/mine.2022009 |
[3] | L. Brasco, Convex duality for principal frequencies, Mathematics in Engineering, 4 (2022), 1–28. https://doi.org/10.3934/mine.2022032 doi: 10.3934/mine.2022032 |
[4] | B. Cassano, L. Cossetti, L. Fanelli, Spectral enclosures for the damped elastic wave equation, Mathematics in Engineering, 4 (2022), 1–10. https://doi.org/10.3934/mine.2022052 doi: 10.3934/mine.2022052 |
[5] | S. Cingolani, M. Gallo, K. Tanaka, On fractional Schrödinger equations with Hartree type nonlinearities, Mathematics in Engineering, 4 (2022), 1–33. https://doi.org/10.3934/mine.2022056 doi: 10.3934/mine.2022056 |
[6] | E. Cinti, R. Ognibene, B. Ruffini, A quantitative stability inequality for fractional capacities, Mathematics in Engineering, 4 (2022), 1–28. https://doi.org/10.3934/mine.2022044 doi: 10.3934/mine.2022044 |
[7] | L. Cossetti, Bounds on eigenvalues of perturbed Lamé operators with complex potentials, Mathematics in Engineering, 4 (2022), 1–29. https://doi.org/10.3934/mine.2022037 doi: 10.3934/mine.2022037 |
[8] | C. De Filippis, Optimal gradient estimates for multi-phase integrals, Mathematics in Engineering, 4 (2022), 1–36. https://doi.org/10.3934/mine.2022043 doi: 10.3934/mine.2022043 |
[9] | A. De Rosa, L. Lussardi, On the anisotropic Kirchhoff-Plateau problem, Mathematics in Engineering, 4 (2022), 1–13. https://doi.org/10.3934/mine.2022011 doi: 10.3934/mine.2022011 |
[10] | S. Della Corte, A. Diana, C. Mantegazza, Global existence and stability for the modified Mullins–Sekerka and surface diffusion flow, Mathematics in Engineering, 4 (2022), 1–104. https://doi.org/10.3934/mine.2022054 doi: 10.3934/mine.2022054 |
[11] | S. Dovetta, A. Pistoia, Solutions to a cubic Schrödinger system with mixed attractive and repulsive forces in a critical regime, Mathematics in Engineering, 4 (2022), 1–21. https://doi.org/10.3934/mine.2022027 doi: 10.3934/mine.2022027 |
[12] | F. Farroni, G. Scilla, F. Solombrino, On some non-local approximation of nonisotropic Griffith-type functionals, Mathematics in Engineering, 4 (2022), 1–22. https://doi.org/10.3934/mine.2022031 doi: 10.3934/mine.2022031 |
[13] | L. Maia, G. Nornberg, Radial solutions for Hénon type fully nonlinear equations in annuli and exterior domains, Mathematics in Engineering, 4 (2022), 1–18. https://doi.org/10.3934/mine.2022055 doi: 10.3934/mine.2022055 |
[14] | I. Mazari, Some comparison results and a partial bang-bang property for two-phases problems in balls, Mathematics in Engineering, 5 (2023), 1–23. https://doi.org/10.3934/mine.2023010 doi: 10.3934/mine.2023010 |
[15] | J. D. Wettstein, Half-harmonic gradient flow: aspects of a non-local geometric PDE, Mathematics in Engineering, 5 (2023), 1–38. https://doi.org/10.3934/mine.2023058 doi: 10.3934/mine.2023058 |