Processing math: 54%
Research article Special Issues

Stable anisotropic capillary hypersurfaces in a wedge

  • Received: 03 January 2022 Revised: 27 March 2022 Accepted: 27 March 2022 Published: 05 May 2022
  • We study a variational problem for hypersurfaces in a wedge in the Euclidean space. Our wedge is bounded by a finitely many hyperplanes passing a common point. The total energy of each hypersurface is the sum of its anisotropic surface energy and the wetting energy of the planar domain bounded by the boundary of the considered hypersurface. An anisotropic surface energy is a generalization of the surface area which was introduced to model the surface tension of a small crystal. We show an existence and uniqueness result of local minimizers of the total energy among hypersurfaces enclosing the same volume. Our result is new even when the special case where the surface energy is the surface area.

    Citation: Miyuki Koiso. Stable anisotropic capillary hypersurfaces in a wedge[J]. Mathematics in Engineering, 2023, 5(2): 1-22. doi: 10.3934/mine.2023029

    Related Papers:

    [1] Chenqian Li, Jun Liu, Jinshan Tang . Simultaneous segmentation and classification of colon cancer polyp images using a dual branch multi-task learning network. Mathematical Biosciences and Engineering, 2024, 21(2): 2024-2049. doi: 10.3934/mbe.2024090
    [2] Yun Jiang, Jie Chen, Wei Yan, Zequn Zhang, Hao Qiao, Meiqi Wang . MAG-Net : Multi-fusion network with grouped attention for retinal vessel segmentation. Mathematical Biosciences and Engineering, 2024, 21(2): 1938-1958. doi: 10.3934/mbe.2024086
    [3] Feiyu Chen, Haiping Ma, Weijia Zhang . SegT: Separated edge-guidance transformer network for polyp segmentation. Mathematical Biosciences and Engineering, 2023, 20(10): 17803-17821. doi: 10.3934/mbe.2023791
    [4] Zhigao Zeng, Cheng Huang, Wenqiu Zhu, Zhiqiang Wen, Xinpan Yuan . Flower image classification based on an improved lightweight neural network with multi-scale feature fusion and attention mechanism. Mathematical Biosciences and Engineering, 2023, 20(8): 13900-13920. doi: 10.3934/mbe.2023619
    [5] Rongrong Bi, Chunlei Ji, Zhipeng Yang, Meixia Qiao, Peiqing Lv, Haiying Wang . Residual based attention-Unet combing DAC and RMP modules for automatic liver tumor segmentation in CT. Mathematical Biosciences and Engineering, 2022, 19(5): 4703-4718. doi: 10.3934/mbe.2022219
    [6] Yalong Yang, Zhen Niu, Liangliang Su, Wenjing Xu, Yuanhang Wang . Multi-scale feature fusion for pavement crack detection based on Transformer. Mathematical Biosciences and Engineering, 2023, 20(8): 14920-14937. doi: 10.3934/mbe.2023668
    [7] Hong'an Li, Man Liu, Jiangwen Fan, Qingfang Liu . Biomedical image segmentation algorithm based on dense atrous convolution. Mathematical Biosciences and Engineering, 2024, 21(3): 4351-4369. doi: 10.3934/mbe.2024192
    [8] Zhenyin Fu, Jin Zhang, Ruyi Luo, Yutong Sun, Dongdong Deng, Ling Xia . TF-Unet:An automatic cardiac MRI image segmentation method. Mathematical Biosciences and Engineering, 2022, 19(5): 5207-5222. doi: 10.3934/mbe.2022244
    [9] Tong Shan, Jiayong Yan, Xiaoyao Cui, Lijian Xie . DSCA-Net: A depthwise separable convolutional neural network with attention mechanism for medical image segmentation. Mathematical Biosciences and Engineering, 2023, 20(1): 365-382. doi: 10.3934/mbe.2023017
    [10] Chaofan Li, Kai Ma . Entity recognition of Chinese medical text based on multi-head self-attention combined with BILSTM-CRF. Mathematical Biosciences and Engineering, 2022, 19(3): 2206-2218. doi: 10.3934/mbe.2022103
  • We study a variational problem for hypersurfaces in a wedge in the Euclidean space. Our wedge is bounded by a finitely many hyperplanes passing a common point. The total energy of each hypersurface is the sum of its anisotropic surface energy and the wetting energy of the planar domain bounded by the boundary of the considered hypersurface. An anisotropic surface energy is a generalization of the surface area which was introduced to model the surface tension of a small crystal. We show an existence and uniqueness result of local minimizers of the total energy among hypersurfaces enclosing the same volume. Our result is new even when the special case where the surface energy is the surface area.



    Recent research on nonlinear propagation of sound in the case of high amplitude waves has shown that there is a literature on well-grounded partial differential models. (see, e.g., [1,5,7,9,10,11,12,13,16,17,18,20,21,23,24,25,26,27,28,29,30,39,49]). This highly active field of research is being carried out by a wide range of applications such as the medical and industrial use of high intensity ultrasound in lithotripsy, thermotherapy, ultrasound cleaning and ultrasound chemistry. The classical models of nonlinear acoustics are Kuznetsov's equation, the Westervelt equation, and the KZK (Kokhlov-Zabolotskaya-Kuznetsov) equation. For mathematics. Existence and singularity analysis of several types of initial boundary value problems of this second nonlinear order in evolutionary PDEs, we refer (see [19,22,31,32,33,34,35,36,37,38,40,41,42,43,44,45,46,47,48,50,51]). Focusing on the study of sound wave propagation, it should be noted that the MGT equation is one of the nonlinear sound equations describing the propagation of sound waves in gases and liquids. The behavior of sound waves depends strongly on the average property of scattering, scattering, and nonlinear effects. Arises from high-frequency ultrasound (HFU) modeling see ([16,25,41]). The original derivation dates back to [19]. This model is realized through the third order hyperbolic equation

    τuttt+uttc2ΔubΔut=0,

    the unknown function u=u(x,t) denotes the scalar acoustic velocity, c denotes the speed of sound and τ denotes the thermal relaxation. Besides, the coefficient b=βc2 is related to the diffusively of the sound with β(0,τ]. In [19], W Chen and A Palmieri studied the blow-up result for the semilinear Moore- Gibson-Thompson equation with nonlinearity of derivative type in the conservative case defined as following

    βuttt+uttΔuβΔut=|ut|p,xRn,t>0.

    This paper is related to the following works (see [27,46]). Now when we talk about the (MGT) equation with memory term, we have I. Lasieka and X.Wang in [29] studied the exponential decay of energy of the temporally third order (Moore-Gibson-Thompson) equation with a memory term as follow

    τuttt+αuttc2AubAutt0g(ts)Aw(s)ds=0,

    where τ,α,b,c2 are physical parameters and A is a positive self-adjoint operator on a Hilbert space H. The convolution term t0g(ts)Aw(s)ds reflects the memory effects of materials due to viscoelasticity. In [13] I. Lasieka and X. Wang studied the general decay of solution of same problem above. Moore-Gibson-Thompson equation with nonlocal condition is a new posed problem. Existence and uniqueness of the generalized solution are established by using Galerkin method. This problems can be encountered in many scientific domains and many engineering models, see previous works ([20,22,31,32,33,34,35,36,37,42,43,47,48]). Mesloub and Mesloub in [40] have applied the Galerkin method to a higher dimension mixed nonlocal problem for a Boussinesq equation. While, S. Boulaaras, A. Zaraï and A. Draifia investigated the Moore-Gibson-Thompson equation with integral condition in [17]. In motivate by these outcomes, we improve the existence and uniqueness by Galerkin method of the Fourth-Order Equation of Moore-Gibson-Thompson Type with source term and integral condition, this problem was cited by the work of F. Dell'Oro and V. Pata in [24].

    We define the problem as follow

    {utttt+αuttt+βuttϱΔuδΔutγΔutt+t0h(tσ)Δu(σ)dσ=F(x,t),u(x,0)=u0(x), ut(x,0)=u1(x), utt(x,0)=u2(x),uttt(x,0)=u3(x)uη=t0Ωu(ξ,τ)dξdτ,   xΩ. (1.1)

    The convolution term t0h(ts)Δu(s)ds reflects the memory effect of materials due to vicoelasticity, F is a given function and h is the relaxation function satisfying

    (H1) hC1(R+,R+) is a non-increasing function satisfying

    h(0)>0,h0>0/H()<h0. (1.2)

    where H()=0h(s)ds>0, H(t)=t0h(s)ds and h>0,h<0.

    (H2) ζ>0 satisfying

    h(t)ζh(t),t0. (1.3)

    The impartial of this manuscript is to consider the following nonlocal mixed boundary value problem for the Moore-Gibson-Thompson (MGT) equation for all (x;t)QT=(0,T), where ΩRn is a bounded domain with sufficiently smooth boundary Ω. solution of the posed problem.

    We divide this paper into the following: In the second part, some definitions and appropriate spaces have been given. Then, we use the Galerkin's method to prove the existence, and in the fourth part we demonstrate the uniqueness.

    Let V(QT) and W(QT) be the set spaces defined respectively by

    V(QT)={uW12(QT):ut,uttW12(QT),u,uL2h(QT)},

    and

    W(QT)={uV(QT):u(x,T)=0}.L2h(QT)={uV(QT):T0hu(t)dt<},

    where

    hu(t)=Ωt0h(tσ)(u(t)u(σ))2dσdx.

    Consider the equation

    (utttt,v)L2(QT)+α(uttt,v)L2(QT)+β(utt,v)L2(QT)ϱ(Δu,v)L2(QT)δ(Δut,v)L2(QT)γ(Δutt,v)L2(QT)+(Δw,v)L2(QT)=(F,v)L2(QT), (2.1)

    where

    w(x,t)=t0h(tσ)u(x,σ)dσ,

    and (.,.)L2(QT) defend for the inner product in L2(QT), u is supposed to be a solution of (1.1) and vW(QT). Upon using (2.1) and (1.1), we find

    (uttt,vt)L2(QT)α(utt,vt)L2(QT)β(ut,vt)L2(QT)+ϱ(u,v)L2(QT)+δ(ut,v)L2(QT)γ(ut,vt)L2(QT)(w,v)L2(QT)=(F,v)L2(QT)+ϱT0Ωv(t0Ωu(ξ,τ)dξdτ)dsxdt+δT0ΩvΩu(ξ,t)dξdsxdtδT0ΩvΩu0(ξ)dξdsxdtγT0Ωvt(t0Ωuτ(ξ,τ)dξdτ)dsxdt+(u3(x),v(x,0))L2(Ω)+α(u2(x),v(x,0))L2(Ω)+β(u1(x),v(x,0))L2(Ω)γ(Δu1,v(x,0))L2(Ω)T0Ωv(t0Ωw(ξ,τ)dξdτ)dsxdt. (2.2)

    Now, we give two useful inequalities:

    ● Gronwall inequality: If for any tI, we have

    y(t)h(t)+ct0y(s)ds,

    where h(t) and y(t) are two nonnegative integrable functions on the interval I with h(t) non decreasing and c is constant, then

    y(t)h(t)exp(ct).

    ● Trace inequality: When wW21(Ω), we have

    w2L2(Ω)εw2L2(Ω)+l(ε)w2L2(Ω),

    where Ω is a bounded domain in Rn with smooth boundary Ω,  and l(ε) is a positive constant.

    Definition 1. If a function uV(QT) satisfies Eq (2.1) for each vW(QT) is called a generalized solution of problem (1.1).

    Here, by using Galerkin's method, we give the existence of problem (1.1).

    Theorem 1. If u0,u1,u2W12(Ω), u3L2(Ω) and FL2(QT), then there is at least one generalized solution in V(QT) to problem (1.1).

    Proof. Let {Zk(x)}k1 be a fundamental system in W12(Ω), such that

    (Zk,Zl)L2(Ω)=δk,l. 

    First, we will find an approximate solution of the problem (1.1) in the form

    uN(x,t)=Nk=1Ck(t)Zk(x), (3.1)

    where the constants Ck(t) are defined by the conditions

    Ck(t)=(uN(x,t),Zk(x))L2(Ω),    k=1,...,N, (3.2)

    and can be determined from the relations

    (uNtttt,Zl(x))L2(Ω)+α(uNttt,Zl(x))L2(Ω)+β(uNtt,Zl(x))L2(Ω)+ϱ(uN,Zl(x))L2(Ω)+δ(uNt,Zl(x))L2(Ω)+γ(uNtt,Zl(x))L2(Ω)(wN,Zl(x))L2(Ω)=(F(x,t),Zl(x))L2(Ω)+ϱΩZl(x)(t0ΩuN(ξ,τ)dξdτ)dsx+δΩZl(x)(t0ΩuNτ(ξ,τ)dξdτ)dsx+γΩZl(x)(t0ΩuNττ(ξ,τ)dξdτ)dsxΩZl(x)(t0ΩwN(ξ,τ)dξdτ)dsx, (3.3)

    Invoking to (3.1) in (3.3) gives for  l=1,...,N.

    ΩNk=1{Ck(t)Zk(x)Zl(x)+αCk(t)Zk(x)Zl(x)+βCk(t)Zk(x)Zl(x)+ϱCk(t)Zk(x).Zl(x)+δCk(t)Zk(x).Zl(x)+γCk(t)Zk.Zl(t0h(tσ)Ck(σ)dσ)Zk(x).Zl(x)}dx=(F(x,t),Zl(x))L2(Ω)+ϱNk=1t0Ck(τ)(ΩZl(x)ΩZk(ξ)dξdsx)dτ+δNk=1t0Ck(τ)(ΩZl(x)ΩZk(ξ)dξdsx)dτ+γNk=1t0Ck(τ)(ΩZl(x)ΩZk(ξ)dξdsx)dτNk=1t0τ0h(τσ)Ck(σ)(ΩZl(x)ΩZk(ξ)dξdsx)dσdτ. (3.4)

    From (3.4) it follows that

    Nk=1Ck(t)(Zk(x),Zl(x))L2(Ω)+αCk(t)(Zk(x),Zl(x))L2(Ω)+βCk(t)(Zk(x),Zl(x))L2(Ω)+ϱCk(t)(Zk,Zl)L2(Ω)+δCk(t)(Zk(x),Zl(x))L2(Ω)+γCk(t)(Zk(x),Zl(x))L2(Ω)(t0h(tσ)Ck(σ)dσ)(Zk,Zl)L2(Ω)}dx=(F(x,t),Zl(x))L2(Ω)+ϱNk=1t0Ck(τ)(ΩZl(x)ΩZk(ξ)dξdsx)dτ+δNk=1t0Ck(τ)(ΩZl(x)ΩZk(ξ)dξdsx)dτ+γNk=1t0(Ck(τ)ΩZl(x)ΩZk(ξ)dξds)dτNk=1t0τ0h(τσ)Ck(σ)(ΩZl(x)ΩZk(ξ)dξdsx)dσdτ,    l=1,...,N. (3.5)

    Let

    (Zk,Zl)L2(Ω)=δkl={1,   k=l0,   kl
    (Zk,Zl)L2(Ω)=γkl,
    ΩZl(x)ΩZk(ξ)dξds=χkl.
    (F(x,t),Zl(x))L2(Ω)=Fl(t).

    Then (3.5) can be written as

    Nk=1Ck(t)δkl+αCk(t)δkl+Ck(t)(βδkl+γγkl)+δCk(t)γkl+ϱCk(t)γklt0(ϱCk(τ)χkl+δCk(τ)χkl+γCk(τ)χklh(tτ)Ck(τ)γkl)t0τ0h(τσ)Ck(σ)dσχkldσdτ=Fl(t). (3.6)

    A differentiation with respect to t (two times), yields

    Nk=1C′′′′′′k(t)δkl+αC′′′′′k(t)δkl+Ck(t)(βδkl+γγkl)+Ck(t)(δγklγχkl)+Ck(t)(ϱγklδχkl)(ϱ+h(0))Ck(t)χkl+h(0)Ck(t)χkl=Fl(t), (3.7)
    {Nk=1[Ck(0)δkl+αCk(0)δkl+Ck(0)(βδkl+γγkl)+δCk(0)γkl+ϱCk(0)γkl]=Fl(0)Ck(0)=(Zk,u0)L2(Ω), Ck(0)=(Zk,u1(x))L2(Ω),Ck(0)=(Zk,u2(x))L2(Ω),Ck(0)=(Zk,u3(x))L2(Ω). (3.8)

    Thus for every n there exists a function uN(x) satisfying (3.3).

    Now, we will demonstrate that the sequence uN is bounded. To do this, we multiply each equation of (3.3) by the appropriate Ck(t) summing over k from 1 to N then integrating the resultant equality with respect to t from 0 to τ, with τT, yields

    (uNtttt,uNt)L2(Qτ)+α(uNttt,uNt)L2(Qτ)+β(uNtt,uNt)L2(Qτ)+ϱ(uN,uNt)L2(Qτ)+δ(uNt,uNt)L2(Qτ)+γ(uNtt,uNt)L2(Qτ)(wN,uNt)L2(Qτ)=(F,uNt)L2(Qτ)+ϱτ0ΩuNt(x,t)(t0ΩuN(ξ,η)dξdη)dsxdt+δτ0ΩuNt(x,t)(t0ΩuNt(ξ,η)dξdη)dsxdt+γτ0ΩuNt(x,t)(t0ΩuNtt(ξ,η)dξdη)dsxdtτ0ΩuNt(x,t)(t0ΩwN(ξ,η)dξdη)dsxdt, (3.9)

    after a simplification of the LHS of (3.9), we get

    (uNtttt,uNt)L2(Qτ)=τ0(uNttt,uNtt)L2(Ω)dt+(uNτττ(x,τ),uNτ(x,τ))L2(Ω),(uNttt(x,0),uNt(x,0))L2(Ω),α(uNttt,uNt)L2(Qτ)=α(uNττ(x,τ),uNτ(x,τ))L2(Ω)(uNtt(x,0),uNt(x,0))L2(Ω)ατ0utt(x,t)2L2(Ω)dt,β(uNtt,uNt)L2(Qτ)=β2uNτ(x,τ)2L2(Ω)β2uNt(x,0)2L2(Ω),ϱ(uN,uNt)L2(Qτ)=ϱ2uN(x,τ)2L2(Ω)ϱ2uN(x,0)2L2(Ω),δ(uNt,uNt)L2(Qτ)=δτ0uNt(x,t)2L2(Ω)dt,γ(uNtt,uNt)L2(Qτ)=γ2uNτ(x,τ)2L2(Ω)γ2uNt(x,0)2L2(Ω),(wN,uNt)L2(Qτ)=12huN(τ)12H(τ)uN(x,τ)2L2(Ω)12τ0huN(t)dt+12h(t)uN(x,t)2L2(Ω)dt, (3.10)
    ϱτ0ΩuNt(t0ΩuN(ξ,η)dξdη)dsxdt=ϱΩuN(x,τ)τ0ΩuN(ξ,t)dξdtdsxϱΩτ0uN(x,t)ΩuN(ξ,t)dξdtdsx, (3.11)
    δτ0ΩuNt(t0ΩuNt(ξ,η)dξdη)dsxdt=δΩτ0uNt(x,t)ΩuN(ξ,t)dξdtdsxδΩτ0uNt(x,t)ΩuN(ξ,0)dξdtdsx, (3.12)
    γτ0ΩuNt(x,t)(t0ΩuNtt(ξ,η)dξdη)dsxdt=γτ0ΩuNt(x,t)(ΩuNt(ξ,t)dξ)dsxdtγτ0ΩuNt(x,t)(ΩuNt(ξ,0)dξ)dsxdt. (3.13)
    τ0ΩuNt(t0ΩwN(ξ,η)dξdη)dsxdt=τ0ΩuNt(t0ΩH(η)uN(ξ,η)dξdη)dsxdt+τ0ΩuNt(t0Ω[η0h(ησ)(uN(ξ,η)uN(ξ,σ))dσ]dξdη)dsxdt=ΩuN(x,τ)τ0ΩH(t)uN(ξ,t)dξdtdsx+τ0ΩuN(x,t)ΩH(t)uN(ξ,t)dξdsxdt+ΩuN(x,τ)(τ0Ω[t0h(tσ)(uN(ξ,t)uN(ξ,σ))dσ]dξ)dsxdtτ0ΩuN(x,t)Ω[t0h(tσ)(uN(ξ,t)uN(ξ,σ))dσ]dξdsxdt. (3.14)

    Taking into account the equalities (3.10)-(3.14) in (3.9), we obtain

    (uNτττ(x,τ),uNτ(x,τ))L2(Ω)+α(uNττ(x,τ),uNτ(x,τ))L2(Ω)+β2uNτ(x,τ)2L2(Ω)+ϱ2uN(x,τ)2L2(Ω)+γ2uNτ(x,τ)2L2(Ω)+12huN(τ)12H(τ)uN(x,τ)2L2(Ω)=(uNttt(x,0),uNt(x,0))L2(Ω)+α(uNtt(x,0),uNt(x,0))L2(Ω)+ϱ2uN(x,0)2L2(Ω)+γ2uNt(x,0)2L2(Ω)+τ0(uNttt,uNtt)L2(Ω)dt+ατ0utt(x,t)2L2(Ω)dtδτ0uNt(x,t)2L2(Ω)dt+β2uNt(x,0)2L2(Ω)+ϱΩuN(x,τ)τ0ΩuN(ξ,t)dξdtdsx+(F,uNt)L2(Qτ)ϱΩτ0uN(x,t)ΩuN(ξ,t)dξdtdsx+δΩτ0uNt(x,t)ΩuN(ξ,t)dξdtdsxδΩτ0uNt(x,t)ΩuN(ξ,0)dξdtdsx+γτ0ΩuNt(x,t)(ΩuNt(ξ,t)dξ)dsxdtγτ0ΩuNt(x,t)(ΩuNt(ξ,0)dξ)dsxdt12τ0huN(t)dt+12h(t)uN(x,t)2L2(Ω)dtΩuN(x,τ)τ0ΩH(t)uN(ξ,t)dξdtdsx+τ0ΩuN(x,t)ΩH(t)uN(ξ,t)dξdsxdt+ΩuN(x,τ)(τ0Ω[t0h(tσ)(uN(ξ,t)uN(ξ,σ))dσ]dξ)dsxdtτ0ΩuN(x,t)Ω[t0h(tσ)(uN(ξ,t)uN(ξ,σ))dσ]dξdsxdt. (3.15)

    Now, multiplying each equation of (3.3) by the appropriate Ck(t), add them up from 1 to N and them integrate with respect to t from 0 to τ, with τT, we obtain

    (uNtttt,uNtt)L2(Qτ)+α(uNttt,uNtt)L2(Qτ)+β(uNtt,uNtt)L2(Qτ)+ϱ(uN,uNtt)L2(Qτ)+δ(uNt,uNtt)L2(Qτ)+γ(uNtt,uNtt)L2(Qτ)(wN,uNtt)L2(Qτ)=(F,uNtt)L2(Qτ)+ϱτ0ΩuNtt(x,t)(t0ΩuN(ξ,η)dξdη)dsxdt+δτ0ΩuNtt(x,t)(t0ΩuNt(ξ,η)dξdη)dsxdt+γτ0ΩuNtt(x,t)(t0ΩuNtt(ξ,η)dξdη)dsxdtτ0ΩuNtt(x,t)(t0ΩwN(ξ,η)dξdη)dsxdt. (3.16)

    With the same reasoning in (3.9), we find

    (uNtttt,uNtt)L2(Qτ)=τ0uNttt(x,t)2L2(Ω)dt+(uNτττ(x,τ),uNττ(x,τ))L2(Ω)(uNttt(x,0),uNtt(x,0))L2(Ω),α(uNttt,uNtt)L2(Qτ)=α2uNττ(x,τ)2L2(Ω)α2uNtt(x,0)2L2(Ω),β(uNtt,uNtt)L2(Qτ)=βτ0uNtt(x,t)2L2(Ω)dt,ϱ(uN,uNtt)L2(Qτ)=ϱ(uN(x,τ),uNτ(x,τ))L2(Qτ)ϱ(uN(x,0),uNt(x,0))L2(Ω)ϱτ0uNt(x,t)2L2(Ω)dt,δ(uNt,uNtt)L2(Qτ)=δ2uNτ(x,τ)2L2(Ω)δ2uNt(x,0)2L2(Ω),γ(uNtt,uNtt)L2(Qτ)=γτ0uNtt(x,t)2L2(Ω)dt(wN,uNtt)L2(Qτ)=12{huN(τ)+h(τ)uN(x,τ)2L2(Ω)2(wN(τ),uNτ)L2(Ω)}+12τ0huN(t)dt12τ0h(t)uN(x,t)2L2(Ω)dt, (3.17)
    ϱτ0ΩuNtt(t0ΩuN(ξ,η)dξdη)dsxdt=ϱΩuNτ(x,τ)τ0ΩuN(ξ,t)dξdtdsxϱΩτ0uNt(x,t)ΩuN(ξ,t)dξdtdsx, (3.18)
    δτ0ΩuNtt(x,t)(t0ΩuNt(ξ,η)dξdη)dsxdt=δΩuNτ(x,τ)ΩuN(ξ,τ)dξdsxδΩuNτ(x,τ)ΩuN(ξ,0)dξdsxδΩτ0uNt(x,t)ΩuNt(ξ,t)dξdtds, (3.19)
    γτ0ΩuNtt(x,t)(t0ΩuNtt(ξ,η)dξdη)dsxdt=γΩuNτ(x,τ)ΩuNτ(ξ,τ)dξdsxγΩuNτ(x,τ)ΩuNt(ξ,0)dξdsxγΩτ0uNt(x,t)ΩuNtt(ξ,t)dξdtds, (3.20)
    τ0ΩuNtt(t0ΩwN(ξ,η)dξdη)dsxdt=τ0ΩuNtt(t0ΩH(η)uN(ξ,η)dξdη)dsxdt+τ0ΩuNtt(t0Ω[η0h(ησ)(uN(ξ,η)uN(ξ,σ))dσ]dξdη)dsxdt=ΩuNτ(x,τ)τ0ΩH(t)uN(ξ,t)dξdtdsx+τ0ΩuNt(x,t)ΩH(t)uN(ξ,t)dξdsxdt+ΩuNτ(x,τ)(τ0Ω[t0h(tσ)(uN(ξ,t)uN(ξ,σ))dσ]dξ)dsxdtτ0ΩuNt(x,t)Ω[t0h(tσ)(uN(ξ,t)uN(ξ,σ))dσ]dξdsxdt. (3.21)

    Upon using (3.17)-(3.21) into (3.16), we have

    (uNτττ(x,τ),uNττ(x,τ))L2(Ω)+α2uNττ(x,τ)2L2(Ω)+δ2uNτ(x,τ)2L2(Ω)+ϱ(uN(x,τ),uNτ(x,τ))L2(Ω)+12h(τ)uN(x,τ)2L2(Ω)12huN(τ)+(wN(τ),uNτ)L2(Ω)=τ0uNttt(x,t)2L2(Ω)dt+(uNttt(x,0),uNtt(x,0))L2(Ω)+α2uNtt(x,0)2L2(Ω)βτ0uNtt(x,t)2L2(Ω)dt+ϱ(uN(x,0),uNt(x,0))L2(Ω)+ϱτ0ut(x,t)2L2(Ω)dt+δ2uNt(x,0)2L2(Ω)+(F,uNtt)L2(Qτ)γτ0uNtt(x,t)2L2(Ω)dt+ϱΩuNτ(x,τ)τ0ΩuN(ξ,t)dξdtdsxϱΩτ0uNt(x,t)ΩuN(ξ,t)dξdtdsx+δΩuNτ(x,τ)ΩuN(ξ,τ)dξdsxδΩuNτ(x,τ)ΩuN(ξ,0)dξdsxδΩτ0uNt(x,t)ΩuNt(ξ,t)dξdtdsx+γΩuNτ(x,τ)ΩuNτ(ξ,τ)dξdsxγΩuNτ(x,τ)ΩuNt(ξ,0)dξdsxγΩτ0uNt(x,t)ΩuNtt(ξ,t)dξdtdsxΩuNτ(x,τ)τ0ΩH(t)uN(ξ,t)dξdtdsx+τ0ΩuNt(x,t)ΩH(t)uN(ξ,t)dξdsxdt+ΩuNτ(x,τ)(τ0Ω[t0h(tσ)(uN(ξ,t)uN(ξ,σ))dσ]dξ)dsxdtτ0ΩuNt(x,t)Ω[t0h(tσ)(uN(ξ,t)uN(ξ,σ))dσ]dξdsxdt. (3.22)

    Now, multiplying each equation of (3.3) by the appropriate Ck(t), add them up from 1 to N and them integrate with respect to t from 0 to τ, with τT, we obtain

    (uNtttt,uNttt)L2(Qτ)+α(uNttt,uNttt)L2(Qτ)+β(uNtt,uNttt)L2(Qτ)+ϱ(uN,uNttt)L2(Qτ)+δ(uNt,uNttt)L2(Qτ)+γ(uNtt,uNttt)L2(Qτ)(wN,uNttt)L2(Qτ)=(F,uNttt)L2(Qτ)+ϱτ0ΩuNttt(x,t)(t0ΩuN(ξ,η)dξdη)dsxdt+δτ0ΩuNttt(x,t)(t0ΩuNt(ξ,η)dξdη)dsxdt+γτ0ΩuNttt(x,t)(t0ΩuNtt(ξ,η)dξdη)dsxdtτ0ΩuNttt(x,t)(t0ΩwN(ξ,η)dξdη)dsxdt. (3.23)

    With the same reasoning in (3.9), we find

    (uNtttt,uNttt)L2(Qτ)=12uNτττ(x,τ)2L2(Ω)12uNttt(x,0)2L2(Ω)α(uNttt,uNttt)L2(Qτ)=ατ0uNttt(x,t)2L2(Ω),β(uNtt,uNttt)L2(Qτ)=β2uNττ(x,τ)2L2(Ω)β2uNtt(x,0)2L2(Ω),ϱ(uN,uNttt)L2(Qτ)=ϱ(uN(x,τ),uNττ(x,τ))L2(Ω)ϱ(uN(x,0),uNtt(x,0))L2(Ω)ϱτ0(uNt,uNtt)L2(Ω)dt,δ(uNt,uNttt)L2(Qτ)=δτ0uNtt(x,t)2L2(Ω)dt+δ(uNτ(x,τ),uNττ(x,τ))L2(Ω)δ(uNt(x,0),uNtt(x,0))L2(Ω),γ(uNtt,uNttt)L2(Qτ)=γ2uNττ(x,τ)2L2(Ω)γ2uNtt(x,0)2L2(Ω)(wN,uNttt)L2(Qτ)=H(τ)(uNττ(x,τ),uN(x,τ))2L2(Ω)+h(τ)(uNτ(x,τ),uN(x,τ))2L2(Ω)12uN(x,τ)2L2(Ω)+ΩuNτττ0h(τσ)(uN(τ)uN(σ))dσdx+ΩuNττ0h(τσ)(uN(τ)uN(σ))dσdx+12huN(τ)+12τ0(hh)uN(t)dth(0)τ0uNt(x,t)2L2(Ω)dt, (3.24)
    ϱτ0ΩuNttt(t0ΩuN(ξ,η)dξdη)dsxdt (3.25)
    =ϱΩuNττ(x,τ)τ0ΩuN(ξ,t)dξdtdsxϱΩτ0uNtt(x,t)ΩuN(ξ,t)dξdtdsx, (3.26)
    δτ0ΩuNttt(x,t)(t0ΩuNt(ξ,η)dξdη)dsxdt=δΩuNττ(x,τ)ΩuN(ξ,τ)dξdsxδΩuNττ(x,τ)ΩuN(ξ,0)dξdsxδΩτ0uNtt(x,t)ΩuNt(ξ,t)dξdtds, (3.27)
    γτ0ΩuNttt(x,t)(t0ΩuNtt(ξ,η)dξdη)dsxdt=γΩuNττ(x,τ)ΩuNτ(ξ,τ)dξdsxγΩuNττ(x,τ)ΩuNt(ξ,0)dξdsxγΩτ0uNtt(x,t)ΩuNtt(ξ,t)dξdtds, (3.28)
    τ0ΩuNttt(t0ΩwN(ξ,η)dξdη)dsxdt=τ0ΩuNttt(t0ΩH(η)uN(ξ,η)dξdη)dsxdt+τ0ΩuNttt(t0Ω[η0h(ησ)(uN(ξ,η)uN(ξ,σ))dσ]dξdη)dsxdt=ΩuNττ(x,τ)τ0ΩH(t)uN(ξ,t)dξdtdsx+τ0ΩuNtt(x,t)ΩH(t)uN(ξ,t)dξdsxdt+ΩuNττ(x,τ)(τ0Ω[t0h(tσ)(uN(ξ,t)uN(ξ,σ))dσ]dξ)dsxdtτ0ΩuNtt(x,t)Ω[t0h(tσ)(uN(ξ,t)uN(ξ,σ))dσ]dξdsxdt. (3.29)

    A substitution of equalities (3.24)-(3.29) in (3.23), gives

    12uNτττ(x,τ)2L2(Ω)+β2uNττ(x,τ)2L2(Ω)+ϱ(uN(x,τ),uNττ(x,τ))L2(Ω)+δ(uNτ(x,τ),uNττ(x,τ))L2(Ω)+γ2uNττ(x,τ)2L2(Ω)H(τ)(uNττ(x,τ),uN(x,τ))2L2(Ω)+h(τ)(uNτ(x,τ),uN(x,τ))2L2(Ω)12uN(x,τ)2L2(Ω)+ΩuNτττ0h(τσ)(uN(τ)uN(σ))dσdx+ΩuNττ0h(τσ)(uN(τ)uN(σ))dσdx+12huN(τ)=(F,uNttt)L2(Qτ)+12uNttt(x,0)2L2(Ω)ατ0uNttt(x,t)2L2(Ω)+ϱ(uN(x,0),uNtt(x,0))L2(Ω)+ϱτ0(uNt,uNtt)L2(Ω)dt+δτ0uNtt(x,t)2L2(Ω)dt+δ(uNt(x,0),uNtt(x,0))L2(Ω)+ϱΩuNττ(x,τ)τ0ΩuN(ξ,t)dξdtdsxγ2uNtt(x,0)2L2(Ω)ϱΩτ0uNtt(x,t)ΩuN(ξ,t)dξdtdsxβ2uNtt(x,0)2L2(Ω)+δΩuNττ(x,τ)ΩuN(ξ,τ)dξdsxδΩuNττ(x,τ)ΩuN(ξ,0)dξdsxδΩτ0uNtt(x,t)ΩuNt(ξ,t)dξdtds+δΩuNττ(x,τ)ΩuNτ(ξ,τ)dξdsxγΩuNττ(x,τ)ΩuNt(ξ,0)dξdsxγΩτ0uNtt(x,t)ΩuNtt(ξ,t)dξdtdsΩuNττ(x,τ)τ0ΩH(t)uN(ξ,t)dξdtdsx+12τ0(hh)uN(t)dth(0)τ0uNt(x,t)2L2(Ω)dt+τ0ΩuNtt(x,t)ΩH(t)uN(ξ,t)dξdsxdt+ΩuNττ(x,τ)(τ0Ω[t0h(tσ)(uN(ξ,t)uN(ξ,σ))dσ]dξ)dsxdtτ0ΩuNtt(x,t)Ω[t0h(tσ)(uN(ξ,t)uN(ξ,σ))dσ]dξdsxdt. (3.30)

    Multiplying (3.15) by λ1, (3.22) by λ2, and (3.30) by λ3 such as (λ1+λ2<λ3), we get

    λ1(uNτττ(x,τ),uNτ(x,τ))L2(Ω)+λ1α(uNττ(x,τ),uNτ(x,τ))L2(Ω)+λ1β2uNτ(x,τ)2L2(Ω)+λ1ϱ2uN(x,τ)2L2(Ω)+(λ1γ2+λ2δ2)uNτ(x,τ)2L2(Ω)+λ2(uNτττ(x,τ),uNττ(x,τ))L2(Ω)+(λ2α2+λ3β2)uNττ(x,τ)2L2(Ω)+λ2ϱ(uN(x,τ),uNτ(x,τ))L2(Ω)+λ32uNτττ(x,τ)2L2(Ω)+λ3ϱ(uN(x,τ),uNττ(x,τ))L2(Ω)+λ3δ(uNτ(x,τ),uNττ(x,τ))L2(Ω)+λ3γ2uNττ(x,τ)2L2(Ω)+λ12huN(τ)λ12H(τ)uN(x,τ)2L2(Ω)λ22huN(τ)+λ2(wN(τ),uNτ)L2(Ω)λ3H(τ)(uNττ(x,τ),uN(x,τ))2L2(Ω)+λ3h(τ)(uNτ(x,τ),uN(x,τ))2L2(Ω)λ32uN(x,τ)2L2(Ω)+λ3ΩuNτττ0h(τσ)(uN(τ)uN(σ))dσdx+λ3ΩuNττ0h(τσ)(uN(τ)uN(σ))dσdx+λ32huN(τ)=λ1(uNttt(x,0),uNt(x,0))L2(Ω)+λ1α(uNtt(x,0),uNt(x,0))L2(Ω)+λ1ϱ2uN(x,0)2L2(Ω)+λ1β2uNt(x,0)2L2(Ω)+(λ1γ2+λ2δ2)uNt(x,0)2L2(Ω)+λ1τ0(uNttt,uNtt)L2(Ω)dt+(λ1αλ2β)τ0utt(x,t)2L2(Ω)dt+(λ2ϱλ1δ)τ0uNt(x,t)2L2(Ω)dt+(λ2λ3α)τ0uNttt(x,t)2L2(Ω)dt+λ2(uNttt(x,0),uNtt(x,0))L2(Ω)+(λ2α2λ3β2)uNtt(x,0)2L2(Ω)λ32uNttt(x,0)2L2(Ω)+λ2ϱ(uN(x,0),uNt(x,0))L2(Ω)+(λ3δλ2γ)τ0uNtt(x,t)2L2(Ω)dt+λ3ϱ(uN(x,0),uNtt(x,0))L2(Ω)+λ3ϱτ0(uNt,uNtt)L2(Ω)dt+λ3δ(uNt(x,0),uNtt(x,0))L2(Ω)λ3γ2uNtt(x,0)2L2(Ω)+λ1ϱΩuN(x,τ)τ0ΩuN(ξ,t)dξdtdsxλ1ϱΩτ0uN(x,t)ΩuN(ξ,t)dξdtdsx+(λ1δλ2ϱ)Ωτ0uNt(x,t)ΩuN(ξ,t)dξdtdsxλ1δΩτ0uNt(x,t)ΩuN(ξ,0)dξdtdsx+(λ1γλ2δ)τ0ΩuNt(x,t)(ΩuNt(ξ,t)dξ)dsxdtλ1γτ0ΩuNt(x,t)(ΩuNt(ξ,0)dξ)dsxdt+λ2ϱΩuNτ(x,τ)τ0ΩuN(ξ,t)dξdtdsx+λ2δΩuNτ(x,τ)ΩuN(ξ,τ)dξdsxλ2δΩuNτ(x,τ)ΩuN(ξ,0)dξdsx+λ2γΩuNτ(x,τ)ΩuNτ(ξ,τ)dξdsxλ2γΩuNτ(x,τ)ΩuNt(ξ,0)dξdsxλ2γΩτ0uNt(x,t)ΩuNtt(ξ,t)dξdtdsx+λ3ϱΩuNττ(x,τ)τ0ΩuN(ξ,t)dξdtdsxλ3ϱΩτ0uNtt(x,t)ΩuN(ξ,t)dξdtdsx+λ3δΩuNττ(x,τ)ΩuN(ξ,τ)dξdsxλ3δΩuNττ(x,τ)ΩuN(ξ,0)dξdsxλ3δΩτ0uNtt(x,t)ΩuNt(ξ,t)dξdtds+λ3γΩuNττ(x,τ)ΩuNτ(ξ,τ)dξdsxλ3γΩuNττ(x,τ)ΩuNt(ξ,0)dξdsxλ3γΩτ0uNtt(x,t)ΩuNtt(ξ,t)dξdtds+λ1(F,uNt)L2(Qτ)+λ2(F,uNtt)L2(Qτ)+λ3(F,uNttt)L2(Qτ)+λ12τ0huN(t)dtλ12h(t)uN(x,t)2L2(Ω)dtλ1ΩuN(x,τ)τ0ΩH(t)uN(ξ,t)dξdtdsx+λ1τ0ΩuN(x,t)ΩH(t)uN(ξ,t)dξdsxdt+λ1ΩuN(x,τ)(τ0Ω[t0h(tσ)(uN(ξ,t)uN(ξ,σ))dσ]dξ)dsxdtλ1τ0ΩuN(x,t)Ω[t0h(tσ)(uN(ξ,t)uN(ξ,σ))dσ]dξdsxdtλ3ΩuNττ(x,τ)τ0ΩH(t)uN(ξ,t)dξdtdsxλ32τ0(hh)uN(t)dt+λ3h(0)τ0uNt(x,t)2L2(Ω)dt+λ3τ0ΩuNtt(x,t)ΩH(t)uN(ξ,t)dξdsxdt+λ3ΩuNττ(x,τ)(τ0Ω[t0h(tσ)(uN(ξ,t)uN(ξ,σ))dσ]dξ)dsxdtλ3τ0ΩuNtt(x,t)Ω[t0h(tσ)(uN(ξ,t)uN(ξ,σ))dσ]dξdsxdtλ2ΩuNτ(x,τ)τ0ΩH(t)uN(ξ,t)dξdtdsx+λ2τ0ΩuNt(x,t)ΩH(t)uN(ξ,t)dξdsxdt+λ2ΩuNτ(x,τ)(τ0Ω[t0h(tσ)(uN(ξ,t)uN(ξ,σ))dσ]dξ)dsxdtλ2τ0ΩuNt(x,t)Ω[t0h(tσ)(uN(ξ,t)uN(ξ,σ))dσ]dξdsxdtλ22τ0huN(t)dt+λ22τ0h(t)uN(x,t)2L2(Ω)dt. (3.31)

    We can estimate all the terms in the RHS of (3.31) as follows

    λ1ϱΩuN(x,τ)τ0ΩuN(ξ,t)dξdtdsxλ1ϱ2ε1(εuN(x,τ)2L2(Ω)+l(ε)uN(x,τ)2L2(Ω))+λ1ϱ2ε1T|Ω||Ω|τ0uN(x,t)2L2(Ω)dt, (3.32)
    λ1ϱΩτ0uN(x,t)ΩuN(ξ,t)dξdtdsxλ1ϱ2ετ0uN(x,t)2L2(Ω)dt+λ1ϱ2(l(ε)+|Ω||Ω|)τ0uN(x,t)2L2(Ω)dt, (3.33)
    (λ1δλ2ϱ)Ωτ0uNt(x,t)ΩuN(ξ,t)dξdtdsx(λ1δ+λ2ϱ)2(ετ0uNt(x,t)2L2(Ω)dt+l(ε)τ0uNt(x,t)2L2(Ω)dt)+(λ1δ+λ2ϱ)2|Ω||Ω|τ0uN(x,t)2L2(Ω)dt, (3.34)
    λ1δΩτ0uNt(x,t)ΩuN(ξ,0)dξdtdsxλ1δ2(ετ0uNt(x,t)2L2(Ω)dt+l(ε)τ0uNt(x,t)2L2(Ω)dt)+λ1δ2|Ω||Ω|TuN(x,0)2L2(Ω), (3.35)
    λ2ϱΩuNτ(x,τ)τ0ΩuN(ξ,t)dξdtdsxλ2ϱ2(εε2uNτ(x,τ)2L2(Ω)+l(ε)ε2uNτ(x,τ)2L2(Ω))+λ2ϱ2ε2|Ω||Ω|Tτ0uN(x,t)2L2(Ω)dt, (3.36)
    λ2δΩuNτ(x,τ)ΩuN(ξ,τ)dξdsxλ2δ2ε3(εuNτ(x,τ)2L2(Ω)+l(ε)uNτ(x,τ)2L2(Ω))+λ2δ2ε3|Ω||Ω|uN(x,τ)2L2(Ω), (3.37)
    λ2δΩuNτ(x,τ)ΩuN(ξ,0)dξdsxλ2δ2ε4(εuNτ(x,τ)2L2(Ω)+l(ε)uNτ(x,τ)2L2(Ω))+λ2δ2ε4|Ω||Ω|uN(x,0)2L2(Ω), (3.38)
    (λ1γλ2δ)Ωτ0uNt(x,t)ΩuNt(ξ,t)dξdtdsx(λ1γ+λ2δ)2ετ0uNt(x,t)2L2(Ω)dt+(λ1γ+λ2δ)2(l(ε)+|Ω||Ω|)τ0uNt(x,t)2L2(Ω)dt, (3.39)
    λ1γτ0ΩuNt(x,t)(ΩuNt(ξ,0)dξ)dsxdtλ1γ2(ετ0uNt(x,t)2L2(Ω)dt+l(ε)τ0uNt(x,t)2L2(Ω)dt)+λ1γ2|Ω||Ω|TuNt(x,0)2L2(Ω), (3.40)
    λ2γΩuNτ(x,τ)ΩuNτ(ξ,τ)dξdsxλ2γ2ε5(εuNτ(x,τ)2L2(Ω)+l(ε)uNτ(x,τ)2L2(Ω))+λ2γ2ε5|Ω||Ω|uNτ(x,τ)2L2(Ω), (3.41)
    λ2γΩuNτ(x,τ)ΩuNt(ξ,0)dξdsxλ2γ2ε6(εuNτ(x,τ)2L2(Ω)+l(ε)uNτ(x,τ)2L2(Ω))+λ2γ2ε6|Ω||Ω|uNt(x,0)2L2(Ω), (3.42)
    λ2γΩτ0uNt(x,t)ΩuNtt(ξ,t)dξdtdsxλ2γ2ετ0uNt(x,t)2L2(Ω)dt+λ2γ2l(ε)τ0uNt(x,t)2L2(Ω)dt+λ2γ2|Ω||Ω|τ0uNtt(x,t)2L2(Ω)dt, (3.43)
    λ3ϱΩuNττ(x,τ)τ0ΩuN(ξ,t)dξdtdsxλ3ϱ2(εε7uNττ(x,τ)2L2(Ω)+l(ε)ε7uNττ(x,τ)2L2(Ω))+λ3ϱ2ε7|Ω||Ω|Tτ0uN(x,t)2L2(Ω)dt, (3.44)

    and

    λ3ϱΩτ0uNtt(x,t)ΩuN(ξ,t)dξdtdsxλ3ϱ2(ετ0uNtt(x,t)2L2(Ω)dt+l(ε)τ0uNtt(x,t)2L2(Ω)dt)+λ3ϱ2|Ω||Ω|τ0uN(x,t)2L2(Ω)dt, (3.45)
    λ3δΩuNττ(x,τ)ΩuN(ξ,τ)dξdsxλ3δ2ε8(εuNττ(x,τ)2L2(Ω)+l(ε)uNττ(x,τ)2L2(Ω))+λ3δ2ε8|Ω||Ω|uN(x,τ)2L2(Ω), (3.46)
    λ3δΩuNττ(x,τ)ΩuN(ξ,0)dξdsxλ3δ2ε9(εuNττ(x,τ)2L2(Ω)+l(ε)uNττ(x,τ)2L2(Ω))+λ3δ2ε9|Ω||Ω|uN(x,0)2L2(Ω), (3.47)
    λ3δΩτ0uNtt(x,t)ΩuNt(ξ,t)dξdtdsxλ3δ2(ετ0uNtt(x,t)2L2(Ω)dt+l(ε)τ0uNtt(x,t)2L2(Ω)dt)+λ3δ2|Ω||Ω|τ0uNt(x,t)2L2(Ω)dt, (3.48)
    λ3γΩuNττ(x,τ)ΩuNτ(ξ,τ)dξdsxλ3γ2ε10(εuNττ(x,τ)2L2(Ω)+l(ε)uNττ(x,τ)2L2(Ω))+λ3γ2ε10|Ω||Ω|uNτ(x,τ)2L2(Ω), (3.49)
    λ3γΩuNττ(x,τ)ΩuNt(ξ,0)dξdsxλ3γ2ε11(εuNττ(x,τ)2L2(Ω)+l(ε)uNττ(x,τ)2L2(Ω))+λ3γ2ε11|Ω||Ω|uNt(x,0)2L2(Ω), (3.50)
    λ3γΩτ0uNtt(x,t)ΩuNtt(ξ,t)dξdtdsxλ3γ2ετ0uNtt(x,t)2L2(Ω)dt+λ3γ2(l(ε)+|Ω||Ω|)τ0uNtt(x,t)2L2(Ω)dt, (3.51)
    λ12uNτττ(x,τ)2L2(Ω)λ12uNτ(x,τ)2L2(Ω)λ1(uNτττ(x,τ),uNτ(x,τ))L2(Ω), (3.52)
    λ22uNτττ(x,τ)2L2(Ω)λ22uNττ(x,τ)2L2(Ω)λ2(uNτττ(x,τ),uNττ(x,τ))L2(Ω), (3.53)
    λ1α2uNττ(x,τ)2L2(Ω)λ1α2uNτ(x,τ)2L2(Ω)λ1α(uNττ(x,τ),uNτ(x,τ))L2(Ω), (3.54)
    λ2ϱε122uN(x,τ)2L2(Ω)λ2ϱ2ε12uNτ(x,τ)2L2(Ω)λ2ϱ(uN(x,τ),uNτ(x,τ))L2(Ω), (3.55)
    λ2ϱε132uN(x,τ)2L2(Ω)λ2ϱ2ε13uNττ(x,τ)2L2(Ω)λ3ϱ(uN(x,τ),uNττ(x,τ))L2(Ω), (3.56)
    λ3δε142uNτ(x,τ)2L2(Ω)λ3δ2ε14uNττ(x,τ)2L2(Ω)λ3δ(uNτ(x,τ),uNττ(x,τ))L2(Ω), (3.57)
    λ1(uNttt(x,0),uNt(x,0))L2(Ω)λ12uNttt(x,0)2L2(Ω)+λ12uNt(x,0)2L2(Ω) (3.58)
    λ1α(uNtt(x,0),uNt(x,0))L2(Ω)λ1α2uNtt(x,0)2L2(Ω)+λ1α2uNt(x,0)2L2(Ω), (3.59)
    λ2(uNttt(x,0),uNtt(x,0))L2(Ω)λ22uNttt(x,0)2L2(Ω)+λ22uNtt(x,0)2L2(Ω), (3.60)
    λ2ϱ(uN(x,0),uNt(x,0))L2(Ω)λ22ϱuN(x,0)2L2(Ω)+λ22ϱuNt(x,0)2L2(Ω), (3.61)
    λ3ϱ(uN(x,0),uNtt(x,0))L2(Ω)λ32ϱuN(x,0)2L2(Ω)+λ32ϱuNtt(x,0)2L2(Ω), (3.62)
    λ3δ(uNt(x,0),uNtt(x,0))L2(Ω)λ32δuNt(x,0)2L2(Ω)+λ32δuNtt(x,0)2L2(Ω), (3.63)
    λ1τ0(uNttt,uNtt)L2(Ω)dtλ12τ0uNttt(x,t)2L2(Ω)dt+λ12τ0uNtt(x,t)2L2(Ω)dt, (3.64)
    λ3ϱτ0(uNt,uNtt)L2(Ω)dtλ3ϱ2τ0uNt(x,t)2L2(Ω)dt+λ3ϱ2τ0uNtt(x,t)2L2(Ω)dt, (3.65)
    λ1ΩuN(x,τ)τ0ΩH(t)uN(ξ,t)dξdtdsxλ1h02(εuN(x,τ)2L2(Ω)+l(ε)uN(x,τ)2L2(Ω))+λ1h02T|Ω||Ω|τ0uN(x,t)2L2(Ω)dt, (3.66)
    λ1Ωτ0uN(x,t)ΩH(t)uN(ξ,t)dξdtdsxλ1h02ετ0uN(x,t)2L2(Ω)dt+λ1h02(l(ε)+|Ω||Ω|)τ0uN(x,t)2L2(Ω)dt, (3.67)
    λ1ΩuN(x,τ)τ0Ωt0h(tσ)(uN(ξ,t)uN(ξ,σ))dσdξdtdsxλ1h02(εuN(x,τ)2L2(Ω)+l(ε)uN(x,τ)2L2(Ω))+λ12T|Ω||Ω|τ0huN(t)dt, (3.68)
    λ1Ωτ0uN(x,t)Ωt0h(tσ)(uN(ξ,t)uN(ξ,σ))dσdξdtdsxλ1h02ετ0uN(x,t)2L2(Ω)dt+λ1h02l(ε)τ0uN(x,t)2L2(Ω)dt+λ12|Ω||Ω|τ0huN(t)dt, (3.69)
    λ2ΩuNτ(x,τ)τ0ΩH(t)uN(ξ,t)dξdtdsxλ2h02(εuNτ(x,τ)2L2(Ω)+l(ε)uNτ(x,τ)2L2(Ω))+λ2h02T|Ω||Ω|τ0uN(x,t)2L2(Ω)dt, (3.70)
    λ2Ωτ0uNτ(x,t)ΩH(t)uN(ξ,t)dξdtdsxλ2h02ετ0uNt(x,t)2L2(Ω)dt+λ2h02l(ε)τ0uNt(x,t)2L2(Ω)dt+λ2h02|Ω||Ω|τ0uN(x,t)2L2(Ω)dt, (3.71)
    λ2ΩuNτ(x,τ)τ0Ωt0h(tσ)(uN(ξ,t)uN(ξ,σ))dσdξdtdsxλ2h02(εuNτ(x,τ)2L2(Ω)+l(ε)uNτ(x,τ)2L2(Ω))+λ22T|Ω||Ω|τ0huN(t)dt, (3.72)
    λ2Ωτ0uNt(x,t)Ωt0h(tσ)(uN(ξ,t)uN(ξ,σ))dσdξdtdsxλ2h02ετ0uNt(x,t)2L2(Ω)dt+λ22h0l(ε)τ0uNt(x,t)2L2(Ω)dt+λ22|Ω||Ω|τ0huN(t)dt, (3.73)
    λ3ΩuNττ(x,τ)τ0ΩH(t)uN(ξ,t)dξdtdsxλ3h02ε18(εuNττ(x,τ)2L2(Ω)+l(ε)uNττ(x,τ)2L2(Ω))+λ3h02ε18T|Ω||Ω|τ0uN(x,t)2L2(Ω)dt, (3.74)
    λ3Ωτ0uNττ(x,t)ΩH(t)uN(ξ,t)dξdtdsxλ3h02ετ0uNtt(x,t)2L2(Ω)dt+λ3h02l(ε)τ0uNtt(x,t)2L2(Ω)dt+λ3h02|Ω||Ω|τ0uN(x,t)2L2(Ω)dt, (3.75)
    λ3ΩuNττ(x,τ)τ0Ωt0h(tσ)(uN(ξ,t)uN(ξ,σ))dσdξdtdsxλ3h02ε15(εuNττ(x,τ)2L2(Ω)+l(ε)uNττ(x,τ)2L2(Ω))+λ32ε15T|Ω||Ω|τ0huN(t)dt, (3.76)
    λ3Ωτ0uNtt(x,t)Ωt0h(tσ)(uN(ξ,t)uN(ξ,σ))dσdξdtdsxλ3h02ετ0uNtt(x,t)2L2(Ω)dt+λ32h0l(ε)τ0uNtt(x,t)2L2(Ω)dt+λ32|Ω||Ω|τ0huN(t)dt, (3.77)
    λ3H(τ)(uNττ,uN)2L2(Ω)λ3h02ε16uNττ(x,τ)2L2(Ω)λ3h0ε162uN(x,τ)2L2(Ω), (3.78)
    λ3h(τ)(uNτ,uN)2L2(Ω)λ3h(0)2uNτ(x,τ)2L2(Ω)λ3h(0)2uN(x,τ)2L2(Ω), (3.79)
    λ3ΩuNττ[τ0h(τσ)(uN(τ)uN(σ)dσ]dxλ3h02ε17uNττ(x,τ)2L2(Ω)λ3ε172huN(τ), (3.80)
    λ3ΩuNτ[τ0h(τσ)(uN(τ)uN(σ)dσ]dxλ3h02uNτ(x,τ)2L2(Ω)+λ32huN(τ), (3.81)
    λ2ΩuNτ[τ0h(τσ)uN(σ)dσ]dxλ22huN(τ)λ2(h0+1)2uNτ(x,τ)2L2(Ω)λ2h02uN(x,τ)2L2(Ω), (3.82)
    λ1(F,uNt)L2(Qτ)λ12τ0F(x,t)2L2(Ω)dt+λ12τ0ut(x,t)2L2(Ω)dtλ2(F,uNtt)L2(Qτ)λ22τ0F(x,t)2L2(Ω)dt+λ22τ0utt(x,t)2L2(Ω)dtλ3(F,uNttt)L2(Qτ)λ32τ0F(x,t)2L2(Ω)dt+λ32τ0uttt(x,t)2L2(Ω)dt. (3.83)

    Substituting (3.32)-(3.83) into (3.31) and make use of the following inequality

    m1uN(x,τ)2L2(Ω)m1uN(x,t)2L2(Qτ)+m1uNt(x,t)2L2(Qτ)+m1uN(x,0)2L2(Ω)m2uNτ(x,τ)2L2(Ω)m2uNt(x,t)2L2(Qτ)+m2uNtt(x,t)2L2(Qτ)+m2uNt(x,0)2L2(Ω)m3uNττ(x,τ)2L2(Ω)m3uNtt(x,t)2L2(Qτ)+m3uNttt(x,t)2L2(Qτ)+m3uNtt(x,0)2L2(Ω)m4uN(x,τ)2L2(Ω)m4uN(x,t)2L2(Qτ)+m4uNt(x,t)2L2(Qτ)+m4uN(x,0)2L2(Ω)m5uNτ(x,τ)2L2(Ω)m5uNt(x,t)2L2(Qτ)+m5uNtt(x,t)2L2(Qτ)+m5uNt(x,0)2L2(Ω)m6huN(τ)m6uNt(x,t)2L2(Qτ)+m6τ0huN(t)dtm7huN(τ)m7uNt(x,t)2L2(Qτ)+m7τ0huN(t)dtm8huN(τ)m8uNt(x,t)2L2(Qτ)m8τ0huN(t)dt,

    where

    m1=λ1ϱε1l(ε)+λ2δ2ε3|Ω||Ω|+λ3δ2ε8|Ω||Ω|+λ1h0l(ε),m2=λ2ϱ2l(ε)ε2+λ2δ2l(ε)ε3+λ2δ2l(ε)ε4+λ2γ2(l(ε)ε5+ε5|Ω||Ω|)+λ2γ2l(ε)ε6+λ3γ2ε10|Ω||Ω|+λ1(1+α)2+λ2h0l(ε),m3=λ3ϱ2l(ε)ε7+λ3δ2l(ε)ε8+λ3δ2l(ε)ε9+λ3γ2l(ε)ε10+λ3γ2l(ε)ε11+λ22+λ1α2+λ3h02ε18l(ε)+λ32ε15l(ε),m4=λ1h02ε1ε+λ2ϱ2ε12+λ2ϱ2ε13+λ1h0ε+λ32+λ3h02ε16+λ3h(0)2+λ2h02+λ1ϱ2ε1ε,m5=λ2ϱ2εε2+λ2δ2εε3+λ2δ2εε4+λ2γ2εε5+λ2γ2εε6+λ2ϱ2ε12+λ3δε142+λ2h0ε+λ3(h0+h(0))2+λ2(h0+1)2,m7=λ2ε172+λ22,m8=λ32,m6=1,

    we have

    λ1ϱ2ε1l(ε)uN(x,τ)2L2(Ω)+λ1β2uNτ(x,τ)2L2(Ω)+(λ2α2+λ3β2)uNττ(x,τ)2L2(Ω)+{λ32λ12λ22}uNτττ(x,τ)2L2(Ω)+λ1ϱ2uN(x,τ)2L2(Ω)+{λ1γ2+λ2δ2}uNτ(x,τ)2L2(Ω)+huN(τ)+λ12huN(τ)λ22huN(τ)+{λ3γ2λ3ϱ2εε7λ3δ2εε8λ3δ2εε9λ3γ2εε10λ3γ2εε11λ2ϱ2ε13λ3δ2ε14λ3h02εε16λ3h02εε17λ3h02ε18λ3h02ε15}uNττ(x,τ)2L2(Ω)γ7uN(x,0)2L2(Ω)+{λ22+λ1α2+(λ2α2λ3β2)+m3}uNtt(x,0)2L2(Ω)+{λ12+λ22+λ32}uNttt(x,0)2L2(Ω)+{λ1ϱ2+λ2ϱ2+λ3ϱ2+m4}uN(x,0)2L2(Ω)+γ8uNt(x,0)2L2(Ω)+{λ2ϱ2+λ3δ2+λ1γ2+λ2δ2+m5}uNt(x,0)2L2(Ω)+{λ3ϱ2+3λ3δ2λ3γ2λ2γ}uNtt(x,0)2L2(Ω)+(γ1+m1)τ0uN(x,t)2L2(Ω)dt+(γ2+m1+m2)τ0uNt(x,t)2L2(Ω)dt+{λ12+λ2λ3α+m3}τ0uNttt(x,t)2L2(Ω)dtm8τ0huN(t)dt+{γ6+m4}τ0uN(x,t)2L2(Ω)dt+(γ3+m2+m3)τ0uNtt(x,t)2L2(Ω)dt+(γ4+m4+m5+m7+m8)τ0uNt(x,t)2L2(Ω)dt+(γ5+m5)τ0uNtt(x,t)2L2(Ω)dt+τ0huN(t)dt+m7τ0huN(t)dt+λ1+λ2+λ32τ0F(x,t)2L2(Ω)dt, (3.84)

    where

    \begin{eqnarray*} \gamma _{1} & = &\frac{\lambda _{1}\varrho }{2}\varepsilon _{1}T\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert +\frac{\lambda _{1}\varrho }{2}\left( l(\varepsilon )+\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \right) +\left( \frac{\lambda _{1}\delta +\lambda _{2}\varrho }{2}\right) \left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \\ &&+\frac{\lambda _{2}\varrho }{2} \varepsilon _{2}T\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert +\frac{\lambda _{3}\varrho }{2}\varepsilon _{7}T\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert +\frac{\lambda _{3}\varrho }{2}\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert++\frac{\lambda _{1}h_{0} }{2} l(\varepsilon )\notag\\ &&+\bigg[\frac{\lambda _{3}h_{0}}{2}\varepsilon _{18}+\frac{(\lambda _{3}+\lambda _{2}+\lambda _{1})h_{0}}{2} +\frac{(\lambda _{1}+\lambda _{2})h_{0}T}{2}\bigg]\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert\notag\\ \gamma _{2}& = &\left( \frac{\lambda _{1}\delta +\lambda _{2}\varrho }{2}\right) l(\varepsilon )+\frac{\lambda _{1}\delta }{2}l(\varepsilon )+\left( \frac{ \lambda _{1}\gamma +\lambda _{2}\delta }{2}\right) \left( l(\varepsilon )+\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \right)\notag\\ && +\frac{\lambda _{1}\gamma }{2}l(\varepsilon )+\frac{\lambda _{2}\gamma }{2}l(\varepsilon )+\frac{\lambda _{3}\delta }{2}\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert+\lambda_{2}h_{0}l(\varepsilon), \end{eqnarray*}
    \begin{eqnarray*} \gamma _{3}& = &\frac{\lambda _{2}\gamma }{2}\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert +\frac{\lambda _{3}\varrho }{2} l(\varepsilon )+\frac{\lambda _{3}\delta }{2}l(\varepsilon )+\frac{\lambda _{3}\gamma }{2}\left( l(\varepsilon )+\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \right) +\frac{\lambda _{1}}{2}\notag\\ &&+\left( \lambda _{1}\alpha -\lambda _{2}\beta \right)+\frac{\lambda _{3}\varrho}{2}+\lambda _{3}h_{0}l(\varepsilon), \notag\\ \gamma _{4}& = &\left( \frac{\lambda _{1}\delta +\lambda _{2}\varrho }{2}\right) \varepsilon +\frac{\lambda _{1}\delta }{2}\varepsilon +\left( \frac{\lambda _{1}\gamma +\lambda _{2}\delta }{2}\right) \varepsilon +\frac{\lambda _{1}\gamma }{2}\varepsilon +\frac{\lambda _{2}\gamma }{2}\varepsilon +\frac{ \lambda _{3}\varrho }{2}\notag\\ &&+\left( \lambda _{2}\varrho -\lambda _{1}\delta \right)+h(0)\lambda_{3}+\lambda_{3}h_{0}\varepsilon, \notag\\ \gamma _{5}& = &\frac{\lambda _{3}\delta }{2}\varepsilon +\frac{\lambda _{3}\gamma }{2}\varepsilon +\frac{\lambda _{3}\varrho }{2}+\left( \lambda _{3}\delta -\lambda _{2}\gamma \right)+\lambda_{3}h_{0}\varepsilon, \notag\\ \gamma _{6}& = &\frac{\lambda _{1}\varrho }{2}\varepsilon +\lambda_{1}h_{0}\varepsilon, \notag\\ \gamma _{7}& = & \frac{\lambda _{1}\delta }{2}\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert T+\frac{\lambda _{2}\delta }{2} \varepsilon _{4}\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert +\frac{\lambda _{3}\delta }{2}\varepsilon _{9}\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert +m_{1}, \notag\\ \gamma _{8}& = &\frac{\lambda _{1}\gamma }{2}\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert T+\frac{\lambda _{2}\gamma }{2} \varepsilon _{6}\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert +\frac{\lambda _{3}\gamma }{2}\varepsilon _{11}\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert +\frac{\lambda _{1}}{2}+ \frac{\lambda _{1}\alpha }{2}+\frac{\lambda _{1}\beta }{2}+m_{2}. \end{eqnarray*}

    Choosing \varepsilon _{7}, \ \varepsilon _{8}, \ \varepsilon _{9}, \ \varepsilon _{10}, \ \varepsilon _{11}, \ \varepsilon _{13} , \varepsilon _{14}, \varepsilon _{15}, \ \varepsilon _{16}, \ \varepsilon _{17} and \varepsilon _{18} sufficiently large

    \begin{equation} \begin{array}{l} \beta_{0}: = \frac{\lambda _{3}\gamma }{2}-\frac{\lambda _{3}\varrho }{2}\frac{\varepsilon }{\varepsilon _{7}}-\frac{ \lambda _{3}\delta }{2}\frac{\varepsilon }{\varepsilon _{8}}-\frac{\lambda _{3}\delta }{2}\frac{\varepsilon }{\varepsilon _{9}}-\frac{\lambda _{3}\gamma }{2}\frac{\varepsilon }{\varepsilon _{10}}-\frac{\lambda _{3}\gamma }{2}\frac{\varepsilon }{\varepsilon _{11}}-\frac{\lambda _{3}\delta }{2\varepsilon _{14}}\\ \quad -\frac{\lambda _{2}\varrho }{2\varepsilon _{13}}-\frac{\lambda_{3}h_{0} }{2}\frac{\varepsilon }{\varepsilon _{16}}-\frac{\lambda _{3} }{2}\frac{\varepsilon }{\varepsilon _{17}}-\frac{\lambda _{3}h_{0} }{2\varepsilon _{18}}-\frac{\lambda _{3} }{2\varepsilon _{15}} > 0, \end{array} \end{equation} (3.85)

    the relation (3.84) reduces to

    \begin{eqnarray} &&\bigg\{ \left\Vert u^{N}(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}+\left\Vert \nabla u^{N}(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}+\left\Vert u_{\tau }^{N}(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2} \\ &&+\left\Vert \nabla u_{\tau }^{N}(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2} +\left\Vert u_{\tau \tau }^{N}(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}+\left\Vert \nabla u_{\tau \tau }^{N}(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}\\ &&+\left\Vert u_{\tau \tau \tau }^{N}(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}+h\circ\nabla u^{N}(\tau)+h\circ u^{N}(\tau)-h'\circ\nabla u^{N}(\tau)\bigg\} \end{eqnarray} (3.86)
    \begin{eqnarray} &\leq& D\int_{0}^{\tau }\bigg\{ \left\Vert u^{N}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}+\left\Vert \nabla u^{N}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}+\left\Vert u_{t}^{N}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2} \\ && +\left\Vert \nabla u_{t}^{N}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}+\left\Vert u_{tt}^{N}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}+\left\Vert \nabla u_{tt}^{N}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}\\ &&+\left\Vert u_{ttt}^{N}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}+h\circ\nabla u^{N}(t)+h\circ u^{N}(t)-h'\circ\nabla u^{N}(t)+\left\Vert F \right\Vert _{L^{2}(\Omega )}^{2} \bigg\} dt \\ &&+D\bigg\{ \left\Vert u^{N}(x, 0)\right\Vert _{W_{2}^{1}(\Omega )}^{2}+\left\Vert u_{t}^{N}(x, 0)\right\Vert _{W_{2}^{1}(\Omega )}^{2} +\left\Vert u_{tt}^{N}(x, 0)\right\Vert _{W_{2}^{1}(\Omega )}^{2}\\ &&+\left\Vert u_{ttt}^{N}(x, 0)\right\Vert _{L^{2}(\Omega )}^{2}+h\circ\nabla u^{N}(0)+h\circ u^{N}(0)-h'\circ\nabla u^{N}(0)\bigg\}, \end{eqnarray} (3.87)

    where

    \begin{equation} D: = \frac{ \begin{array}{c} \max \left\{ \frac{\lambda _{1}\delta }{2}\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert T+\frac{\lambda _{2}\delta }{2} \varepsilon _{4}\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert +\frac{\lambda _{3}\delta }{2}\varepsilon _{9}\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert+m_{1}\right.\\ , \left.\frac{\lambda _{1}\gamma }{2}\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert T+\frac{\lambda _{2}\gamma }{2}\varepsilon _{6}\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \right. \\ +\frac{\lambda _{3}\gamma }{2}\varepsilon _{11}\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert +\frac{\lambda _{1}}{2}+\frac{\lambda _{1}\alpha }{2}+\frac{\lambda _{1}\beta }{2}+m_{2}, \frac{\lambda _{2}}{2}+ \frac{\lambda _{1}\alpha }{2}+\frac{\lambda _{2}\alpha }{2}-\frac{\lambda _{3}\beta }{2}+m_{3}, \\ \frac{\lambda_{1}+\lambda_{2}+\lambda_{3}}{2}, \frac{\lambda _{1}\varrho }{2}+\frac{\lambda _{2}\varrho }{2}+\frac{\lambda _{3}\varrho }{2}+m_{4}, \frac{\lambda _{2}\varrho }{2}+\frac{\lambda _{3}\delta }{2}+\frac{\lambda _{1}\gamma }{2}+\frac{\lambda _{2}\delta }{2} +m_{5}, \\ \gamma _{1}+m_{1}, \gamma _{2}+m_{1}+m_{2}, \gamma _{3}+m_{2}+m_{3}, \frac{ \lambda _{1}}{2}+\lambda _{2}-\lambda _{3}\alpha +m_{3}, \\ \left.\frac{\lambda _{3}\varrho }{2}+\frac{\lambda _{3}\delta }{2}-\frac{ \lambda _{3}\gamma }{2}, \gamma_{6}+m_{4}, \gamma _{4}+m_{4}+m_{5}, \gamma _{5}+m_{5}, m_{7}, m_{8}, 1\right\} \end{array} }{ \begin{array}{c} \min \left\{ \frac{\lambda _{1}\varrho }{2\varepsilon _{1}}l(\varepsilon ), \frac{\lambda _{1}\beta }{2}, \frac{\lambda _{2}\alpha }{2}+\frac{\lambda _{3}\beta }{2}, \frac{\lambda _{3}}{2}-\frac{\lambda _{1}}{2}-\frac{\lambda _{2}}{2}, \frac{\lambda _{1}\varrho }{2}, \frac{\lambda _{1}\gamma }{2}+\frac{\lambda _{2}\delta }{2}, 1, \frac{\lambda_{1}}{2}, \frac{\lambda_{2}}{2}, \beta_{0}\right\} \end{array} }. \end{equation} (3.88)

    Applying the Gronwall inequality to (3.87) and then integrate from 0 to \tau appears that

    \begin{equation} \begin{array}{c} \left\Vert u^{N}\left( x, t\right) \right\Vert _{W_{2}^{1}\left( Q_{\tau }\right) }^{2}+\left\Vert u_{t}^{N}\left( x, t\right) \right\Vert _{W_{2}^{1}\left( Q_{\tau }\right) }^{2}+\left\Vert u_{tt}^{N}\left( x, t\right) \right\Vert _{W_{2}^{1}\left( Q_{\tau }\right) }^{2} +\Vert u^{N}\left( x, t\right)\Vert_{h}\\ \leq De^{DT}\bigg\{ \left\Vert u_{0}\left( x\right) \right\Vert _{W_{2}^{1}(\Omega )}^{2}+\left\Vert u_{1}\left( x\right) \right\Vert _{W_{2}^{1}(\Omega )}^{2}+\left\Vert u_{2}\left( x\right) \right\Vert _{L^{2}(\Omega )}^{2}\\ \quad +\left\Vert u_{3}\left( x\right) \right\Vert _{L^{2}(\Omega )}^{2}+\left\Vert F \right\Vert _{L^{2}(\Omega )}^{2}\bigg\} . \end{array}. \end{equation} (3.89)

    We deduce from (3.89) that

    \begin{equation} \left\Vert u^{N}\left( x, t\right) \right\Vert _{W_{2}^{1}\left( Q_{\tau }\right) }^{2}+\left\Vert u_{t}^{N}\left( x, t\right) \right\Vert _{W_{2}^{1}\left( Q_{\tau }\right) }^{2}+\left\Vert u_{tt}^{N}\left( x, t\right) \right\Vert _{W_{2}^{1}\left( Q_{\tau }\right) }^{2}+\Vert u^{N}\left( x, t\right)\Vert_{h}\leq A, \end{equation} (3.90)

    where

    \begin{equation*} \Vert u^{N}\left( x, t\right)\Vert_{h}: = \int_{0}^{\tau}\bigg(h\circ\nabla u^{N}(t)+h\circ u^{N}(t)-h'\circ\nabla u^{N}(t)\bigg)dt. \end{equation*}

    Therefore the sequence \left\{ u^{N}\right\} _{N\geq 1} is bounded in V\left(Q_{T}\right), and we can extract from it a subsequence for which we use the same notation which converges weakly in V\left(Q_{T}\right) \ to a limit function u\left(x, t\right) we have to show that u\left(x, t\right) is a generalized solution of (1.1). Since u^{N}\left(x, t\right) \rightarrow u\left(x, t\right) in L^{2}\left(Q_{T}\right) and u^{N}(x, 0)\rightarrow \zeta \left(x\right) in L^{2}(\Omega) , then u(x, 0) = \zeta \left(x\right).

    Now to prove that (2.1) holds, we multiply each of the relations (3.5) by a function p_{l}\left(t\right) \in W_{2}^{1}(0, T), \ p_{l}\left(t\right) = 0, then add up the obtained equalities ranging from l = 1\ to l = N, and integrate over t on (0, T).\ If we let \eta ^{N} = \sum\limits_{k = 1}^{N}p_{k}\left(t\right) Z_{k}\left(x\right), then we have

    \begin{equation} \begin{array}{l} -(u_{ttt}^{N}, \eta _{t}^{N})_{L^{2}\left( Q_{T}\right) }-\alpha (u_{tt}^{N}, \eta _{t}^{N})_{L^{2}\left( Q_{T}\right) }-\beta (u_{t}^{N}, \eta _{t}^{N})_{L^{2}\left( Q_{T}\right) }+\varrho (\nabla u^{N}, \nabla \eta ^{N})_{L^{2}\left( Q_{T}\right) } \\ +\delta (\nabla u_{t}^{N}, \nabla \eta ^{N})_{L^{2}\left( Q_{T}\right) }-\gamma \left( \nabla u_{t}^{N}, \nabla \eta _{t}^{N}\right) _{L^{2}\left( Q_{T}\right) }- (\nabla w^{N}, \nabla \eta ^{N})_{L^{2}\left( Q_{T}\right) } \\ = \varrho \int\nolimits_{\partial \Omega }\int\nolimits_{0}^{T}\eta ^{N}\left( x, t\right) \left( \int\nolimits_{0}^{t}\int\nolimits_{\Omega }u^{N}\left( \xi , \tau \right) d\xi d\tau \right) dtds_{x}\\ +\delta\int\nolimits_{\partial \Omega }\int\nolimits_{0}^{T}\eta ^{N}\left( x, t\right) \int\nolimits_{\Omega }u^{N}\left( \xi , t\right) d\xi dtds_{x} \\ -\delta \int\nolimits_{\partial \Omega }\int\nolimits_{0}^{T}\eta ^{N}\left( x, t\right) \int\nolimits_{\Omega }u^{N}(\xi , 0)d\xi dtds_{x}-\gamma \int\nolimits_{0}^{T}\int\nolimits_{\partial \Omega }\eta _{t}^{N}\left( \int\nolimits_{\Omega }u^{N}\left( \xi , t\right) d\xi \right) ds_{x}dt \\ +\gamma \int\nolimits_{0}^{T}\int\nolimits_{\partial \Omega }\eta _{t}^{N}\left( \int\nolimits_{\Omega }u^{N}\left( \xi , 0\right) d\xi \right) ds_{x}dt-\gamma \left( \Delta u_{t}^{N}(x, 0), \eta ^{N}(0)\right) _{L^{2}(\Omega )} \\ -\int\nolimits_{\partial \Omega }\int\nolimits_{0}^{T}\eta ^{N}\left( x, t\right) \left( \int\nolimits_{0}^{t}\int\nolimits_{\Omega }w^{N}\left( \xi , \tau \right) d\xi d\tau \right) dtds_{x}+\left( F, \eta _{t}^{N}\right) _{L^{2}\left( Q_{T}\right)}\\ +\left( u_{ttt}^{N}(x, 0), \eta ^{N}(0)\right) _{L^{2}(\Omega )}+\alpha \left( u_{tt}^{N}(x, 0), \eta ^{N}(0)\right) _{L^{2}(\Omega )}+\beta \left( u_{tt}^{N}(x, 0), \eta ^{N}(0)\right) _{L^{2}(\Omega )}, \end{array} \end{equation} (3.91)

    for all \eta ^{N} of the form \sum\limits_{k = 1}^{N}p_{l}\left(t\right) Z_{k}\left(x\right).

    Since

    \begin{equation*} \int\nolimits_{0}^{t}\int\nolimits_{\Omega }(\left( u^{N}\left( \xi , \tau \right) -u\left( \xi , \tau \right) \right) d\xi d\tau \leq \sqrt{T\left\vert \Omega \right\vert }\left\Vert u^{N}-u\right\Vert _{L^{2}\left( Q_{T}\right) }, \end{equation*}
    \begin{eqnarray*} &&\int\nolimits_{0}^{T}\eta ^{N}\left( x, t\right) \int\nolimits_{\Omega }\left( u_{t}^{N}\left( \xi , t\right) -u_{t}\left( \xi , t\right) \right) d\xi dt\notag\\ &\leq& \sqrt{\left\vert \Omega \right\vert }\left( \int\nolimits_{0}^{T}(\eta ^{N}\left( x, t\right) )^{2}dt\right) ^{1/2}\left\Vert u_{t}^{N}-u_{t}\right\Vert _{L^{2}\left( Q_{T}\right) }, \end{eqnarray*}
    \begin{eqnarray*} &&\int\nolimits_{0}^{T}\eta ^{N}\left( x, t\right) \int\nolimits_{\Omega }(u\left( ^{N}(\xi , 0)-u(\xi , 0)\right) d\xi dt \\ &\leq &\sqrt{\left\vert \Omega \right\vert }\left( \int\nolimits_{0}^{T}(\eta ^{N}\left( x, t\right) )^{2}dt\right) ^{1/2}\left\Vert u^{N}(x, 0)-u(x, 0)\right\Vert _{L^{2}\left( Q_{T}\right) }, \end{eqnarray*}

    and

    \begin{equation*} \left\Vert u^{N}-u\right\Vert _{L^{2}\left( Q_{T}\right) }\rightarrow 0, \rm{ \ as }N\rightarrow \infty , \end{equation*}

    therefore we have

    \begin{eqnarray*} &&\varrho \int\nolimits_{\partial \Omega }\int\nolimits_{0}^{T}\eta ^{N}\left( x, t\right) \int\nolimits_{0}^{t}\int\nolimits_{\Omega }u^{N}\left( \xi , \tau \right) d\xi d\tau dtds_{x} \\ &\rightarrow &\varrho \int\nolimits_{\partial \Omega }\int\nolimits_{0}^{T}\eta \left( x, t\right) \int\nolimits_{0}^{t}\int\nolimits_{\Omega }u\left( \xi , \tau \right) d\xi d\tau dtds_{x}, \end{eqnarray*}
    \begin{eqnarray*} &&\delta \int\nolimits_{\partial \Omega }\int\nolimits_{0}^{T}\eta ^{N}\left( x, t\right) \int\nolimits_{\Omega }u^{N}\left( \xi , t\right) d\xi dtds_{x} \\ &\rightarrow &\delta \int\nolimits_{\partial \Omega }\int\nolimits_{0}^{T}\eta \left( x, t\right) \int\nolimits_{\Omega }u\left( \xi , t\right) d\xi dtds_{x}, \end{eqnarray*}
    \begin{eqnarray*} &&-\delta \int\nolimits_{\partial \Omega }\int\nolimits_{0}^{T}\eta ^{N}\left( x, t\right) \int\nolimits_{\Omega }u^{N}(\xi , 0)d\xi dtds \\ &\rightarrow &-\delta \int\nolimits_{\partial \Omega }\int\nolimits_{0}^{T}\eta \left( x, t\right) \int\nolimits_{\Omega }u(\xi , 0)d\xi dtds, \end{eqnarray*}
    \begin{eqnarray*} &&-\gamma \int\nolimits_{0}^{T}\int\nolimits_{\partial \Omega }\eta _{t}^{N}\left( \int\nolimits_{\Omega }u^{N}\left( \xi , t\right) d\xi \right) ds_{x}dt \\ &\rightarrow &-\gamma \int\nolimits_{0}^{T}\int\nolimits_{\partial \Omega }\eta _{t}\left( \int\nolimits_{\Omega }u\left( \xi , t\right) d\xi \right) ds_{x}dt, \end{eqnarray*}
    \begin{eqnarray*} &&\gamma \int\nolimits_{0}^{T}\int\nolimits_{\partial \Omega }\eta _{t}^{N}\left( \int\nolimits_{\Omega }u^{N}\left( \xi , 0\right) d\xi \right) ds_{x}dt \\ &\rightarrow &\gamma \int\nolimits_{0}^{T}\int\nolimits_{\partial \Omega }\eta _{t}\left( \int\nolimits_{\Omega }u\left( \xi , 0\right) d\xi \right) ds_{x}dt. \end{eqnarray*}
    \begin{eqnarray*} && \int\nolimits_{\partial \Omega }\int\nolimits_{0}^{T}\eta ^{N}\left( x, t\right) \int\nolimits_{0}^{t}\int\nolimits_{\Omega }w^{N}\left( \xi , \tau \right) d\xi d\tau dtds_{x} \\ &\rightarrow &\varrho \int\nolimits_{\partial \Omega }\int\nolimits_{0}^{T}\eta \left( x, t\right) \int\nolimits_{0}^{t}\int\nolimits_{\Omega }w\left( \xi , \tau \right) d\xi d\tau dtds_{x}. \end{eqnarray*}

    Thus, the limit function u satisfies (2.1) for every \eta ^{N} = \sum\limits_{k = 1}^{N}p_{l}\left(t\right) Z_{k}\left(x\right). We denote by \mathbb{Q}_{N} the totality of all functions of the form \eta ^{N} = \sum\limits_{k = 1}^{N}p_{l}\left(t\right) Z_{k}\left(x\right), with p_{l}\left(t\right) \in W_{2}^{1}(0, T), p_{l}\left(t\right) = 0.

    But \cup _{l = 1}^{N} \mathbb{Q}_{N} is dense in W\left(Q_{T}\right) , then relation (2.1) holds for all u \in W\left(Q_{T}\right).\ Thus we have shown that the limit function u\left(x, t\right) is a generalized solution of problem (1.1) in V\left(Q_{T}\right).

    Theorem 2. The problem (1.1) cannot have more than one generalized solution in V\left(Q_{T}\right).

    Proof. Suppose that there exist two different generalized solutions u_{1}\in V\left(Q_{T}\right) and u_{2}\in V\left(Q_{T}\right) \ for the problem (1.1). Then, U = u_{1}-u_{2} solves

    \begin{equation} \left\{ \begin{array}{l} U_{tttt}+\alpha U_{ttt}+\beta U_{tt}-\varrho \Delta U-\delta \Delta U_{t}-\gamma \Delta U_{tt}+ \int_{0}^{t}h(t-\sigma)\Delta u(\sigma)d\sigma = 0, \\ \\ U(x, 0) = U_{t}(x, 0) = U_{tt}(x, 0) = U_{ttt}(x, 0) = 0 \\ \\ \dfrac{\partial u}{\partial \eta } = \int_{0}^{t}\int_{\Omega }u\left( \xi , \tau \right) d\xi d\tau , \ \ \ x\in \partial \Omega . \end{array} \right. \end{equation} (4.1)

    and (2.1) gives

    \begin{eqnarray} &&-(U_{ttt}, v_{t})_{L^{2}\left( Q_{T}\right) }-\alpha (U_{tt}, v_{t})_{L^{2}\left( Q_{T}\right) }-\beta (U_{t}, v_{t})_{L^{2}\left( Q_{T}\right) }+\varrho (\nabla U, \nabla v)_{L^{2}\left( Q_{T}\right) } \\ &&+\delta (\nabla U_{t}, \nabla v)_{L^{2}\left( Q_{T}\right) }-\gamma \left( \nabla U_{t}, \nabla v_{t}\right) _{L^{2}\left( Q_{T}\right) }-(\nabla W, \nabla v)_{L^{2}\left( Q_{T}\right) } \\ & = &\varrho \int_{0}^{T}\int_{\partial \Omega }v\left( \int_{0}^{t}\int_{\Omega }u\left( \xi , \tau \right) d\xi d\tau \right) ds_{x}dt+\delta \int_{0}^{T}\int_{\partial \Omega }v\int_{\Omega }U\left( \xi , t\right) d\xi ds_{x}dt \\ &&-\gamma \int_{0}^{T}\int_{\partial \Omega }v_{t}\left( \int_{\Omega }U_{\tau }\left( \xi , t\right) d\xi dt\right) ds_{x}dt\\ &&-\int_{0}^{T}\int_{\partial \Omega }v\left( \int_{0}^{t}\int_{\Omega }W\left( \xi , \tau \right) d\xi d\tau \right) ds_{x}dt, \end{eqnarray} (4.2)

    where

    \begin{equation*} W(x, t): = \int_{0}^{t}h(t-\sigma)\Delta U(\sigma)d\sigma. \end{equation*}

    Consider the function

    \begin{equation} v\left( x, t\right) = \left\{ \begin{array}{ll} \int_{t}^{\tau }U(x, s)ds, & 0\leq t\leq \tau , \\ 0, & \tau \leq t\leq T. \end{array} \right. \end{equation} (4.3)

    It is obvious that v\in W\left(Q_{T}\right) and v_{t}\left(x, t\right) = -U\left(x, t\right) for all t\in \left[0, \tau \right].\ Integration by parts in the left hand side of (4.2) gives

    \begin{equation} -(U_{ttt}, v_{t})_{L^{2}\left( Q_{T}\right) } = (U_{\tau \tau }(x, \tau ), U(x, \tau ))_{L^{2}\left( \Omega \right) }-\frac{1}{2}\left\Vert U_{\tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}, \end{equation} (4.4)
    \begin{equation} -\alpha \left( U_{tt}, v_{t}\right) _{L^{2}\left( Q_{T}\right) } = \alpha \left( U_{\tau }(x, \tau ), U(x, \tau )\right) _{L^{2}(\Omega )}-\alpha \int_{0}^{\tau }\left\Vert U_{t}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt, \end{equation} (4.5)
    \begin{equation} -\beta \left( U_{t}, v_{t}\right) _{L^{2}\left( Q_{T}\right) } = \frac{\beta }{2 }\left\Vert U(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}, \end{equation} (4.6)
    \begin{equation} \varrho \left( \nabla U, \nabla v\right) _{L^{2}\left( Q_{T}\right) } = \frac{ \varrho }{2}\left\Vert \nabla v(x, 0)\right\Vert _{L^{2}(\Omega )}^{2}, \end{equation} (4.7)
    \begin{equation} \delta \left( \nabla U_{t}, \nabla v\right) _{L^{2}\left( Q_{T}\right) } = \delta \int_{0}^{\tau }\left\Vert \nabla v_{t}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt, \end{equation} (4.8)
    \begin{equation} -\gamma \left( \nabla U_{t}, \nabla v_{t}\right) _{L^{2}\left( Q_{T}\right) } = \frac{\gamma }{2}\left\Vert \nabla U(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}, \end{equation} (4.9)
    \begin{eqnarray} - \left( \nabla W, \nabla v\right) _{L^{2}\left( Q_{T}\right) }&\leq& h_{0}\int_{0}^{\tau}\left\Vert \nabla v(x, t )\right\Vert _{L^{2}(\Omega )}^{2}dt+\frac{h_{0}}{2}\int_{0}^{\tau}\left\Vert \nabla U(x, t )\right\Vert _{L^{2}(\Omega )}^{2}dt\\ &&+\frac{1}{2}\int_{0}^{\tau}h\circ \nabla U(t )dt. \end{eqnarray} (4.10)

    Plugging (4.4)-(4.10) into (4.2) we get

    \begin{eqnarray} &&(U_{\tau \tau }(x, \tau ), U(x, \tau ))_{L^{2}\left( \Omega \right) }+\alpha \left( U_{\tau }(x, \tau ), U(x, \tau )\right) _{L^{2}(\Omega )}+\frac{\beta }{2 }\left\Vert U(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2} \\ &&+\frac{\varrho }{2}\left\Vert \nabla v(x, 0)\right\Vert _{L^{2}(\Omega )}^{2}+\frac{\gamma }{2}\left\Vert \nabla U(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}-\frac{1}{2}\left\Vert U_{\tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2} \\ &\leq&\alpha \int_{0}^{\tau }\left\Vert U_{t}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt-\delta \int_{0}^{\tau }\left\Vert \nabla v_{t}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt+h_{0}\int_{0}^{\tau}\left\Vert \nabla v(x, t )\right\Vert _{L^{2}(\Omega )}^{2}dt\\ &&+\frac{h_{0}}{2}\int_{0}^{\tau}\left\Vert \nabla U(x, t )\right\Vert _{L^{2}(\Omega )}^{2}dt+\frac{1}{2}\int_{0}^{\tau}h\circ \nabla U(t )dt \\ &&+\varrho \int_{0}^{T}\int_{\partial \Omega }v\left( \int_{0}^{t}\int_{\Omega }U\left( \xi , \tau \right) d\xi d\tau \right) ds_{x}dt \\ &&+\delta \int_{0}^{T}\int_{\partial \Omega }v\int_{\Omega }U\left( \xi , t\right) d\xi ds_{x}dt-\gamma \int\nolimits_{0}^{T}\int\nolimits_{\partial \Omega }v_{t}\left( \int\nolimits_{\Omega }U\left( \xi , t\right) d\xi \right) dsdt\\ &&-\int_{0}^{T}\int_{\partial \Omega }v\left( \int_{0}^{t}\int_{\Omega }W\left( \xi , \tau \right) d\xi d\tau \right) ds_{x}dt . \end{eqnarray} (4.11)

    Now since

    \begin{equation*} v^{2}\left( x, t\right) = \left( \int_{t}^{\tau }U(x, s)ds\right) ^{2}\leq \tau \int_{0}^{\tau }U^{2}(x, s)ds, \end{equation*}

    then

    \begin{equation} \left\Vert v\right\Vert _{L^{2}\left( Q_{\tau }\right) }^{2}\leq \tau ^{2}\left\Vert U\right\Vert _{L^{2}\left( Q_{\tau }\right) }^{2}\leq T^{2}\left\Vert U\right\Vert _{L^{2}\left( Q_{\tau }\right) }^{2}. \end{equation} (4.12)

    Using the trace inequality, the RHS of (4.11) can be estimated as follows

    \begin{eqnarray} &&\varrho \int_{0}^{T}\int_{\partial \Omega }v\left( \int_{0}^{t}\int_{\Omega }U\left( \xi , \tau \right) d\xi d\tau \right) ds_{x}dt \\ &\leq &\frac{\varrho }{2}T^{2}\left\{ l(\varepsilon )+\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \right\} \int_{0}^{\tau }\left\Vert U\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt +\frac{\varrho }{2}\varepsilon \int_{0}^{\tau }\left\Vert \nabla v\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt, \end{eqnarray} (4.13)

    and

    \begin{eqnarray} &&\delta \int_{0}^{T}\int_{\partial \Omega }v\int_{\Omega }U\left( \xi , t\right) d\xi ds_{x}dt \\ &\leq &\frac{\delta }{2}\left\{ T^{2}l(\varepsilon )+\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \right\} \int_{0}^{\tau }\left\Vert U\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt +\frac{\delta }{2}\varepsilon \int_{0}^{\tau }\left\Vert \nabla v\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt, \end{eqnarray} (4.14)

    and

    \begin{eqnarray} &&-\gamma \int\nolimits_{0}^{T}\int\nolimits_{\partial \Omega }v_{t}\left( \int\nolimits_{\Omega }U\left( \xi , t\right) d\xi \right) dsdt \\ & = &\gamma \int\nolimits_{0}^{\tau }\int\nolimits_{\partial \Omega }v\left( \int\nolimits_{\Omega }U_{t}\left( \xi , t\right) d\xi \right) dsdt \\ &\leq &\frac{\gamma \left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert }{2}\left\Vert U_{t}\right\Vert _{L^{2}(Q_{\tau })}^{2}+\frac{ \gamma T^{2}}{2}\varepsilon \left\Vert \nabla v\right\Vert _{L^{2}(Q_{\tau })}^{2}+\frac{\gamma }{2}l(\varepsilon )T^{2}\left\Vert U\right\Vert _{L^{2}(Q_{\tau })}^{2}. \end{eqnarray} (4.15)
    \begin{eqnarray} &&- \int_{0}^{T}\int_{\partial \Omega }v\left( \int_{0}^{t}\int_{\Omega }W\left( \xi , \tau \right) d\xi d\tau \right) ds_{x}dt \\ & = & -\int_{0}^{T}\int_{\partial \Omega }v\left( \int_{0}^{t}\int_{\Omega }H(\tau)U\left( \xi , \tau \right) d\xi d\tau \right) ds_{x}dt\\ &&+ \int_{0}^{T}\int_{\partial \Omega }v\left( \int_{0}^{t}\int_{\Omega }\bigg[\int_{0}^{\tau}h(\tau-\sigma)(U\left( \xi , \tau \right)-U\left( \xi , \sigma \right))d\sigma\bigg] d\xi d\tau \right) ds_{x}dt\\ &\leq &\frac{h_{0} }{2}T^{2}\left\{ l(\varepsilon )+\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \right\} \int_{0}^{\tau }\left\Vert U\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt +\frac{h_{0} }{2}\varepsilon \int_{0}^{\tau }\left\Vert \nabla v\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt\\ &&+\frac{1}{2} l(\varepsilon ) \int_{0}^{\tau }\left\Vert U\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt+\frac{1}{2}\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert\int_{0}^{\tau }h\circ U(t)dt \\ && +\frac{1}{2}\varepsilon \int_{0}^{\tau }\left\Vert \nabla v\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt. \end{eqnarray} (4.16)

    Combining the relations (4.13)-(4.16) and (4.11) we get

    \begin{equation} \begin{array}{l} (U_{\tau \tau }(x, \tau ), U(x, \tau ))_{L^{2}\left( \Omega \right) }+\alpha \left( U_{\tau }(x, \tau ), U(x, \tau )\right) _{L^{2}(\Omega )}+\frac{\beta }{2 }\left\Vert U(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2} \\ +\frac{\varrho }{2}\left\Vert \nabla v(x, 0)\right\Vert _{L^{2}(\Omega )}^{2}+ \frac{\gamma }{2}\left\Vert \nabla U(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}-\frac{1}{2}\left\Vert U_{\tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2} \\ \leq \bigg\{ \frac{\varrho }{2}T^{2}\left( l(\varepsilon )+\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \right) +\frac{\delta }{2} \left( T^{2}l(\varepsilon )+\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \right) +\frac{\gamma }{2}l(\varepsilon )T^{2}\\ \quad +\frac{h_{0}}{2}T^{2}(l(\varepsilon )+\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert)+\frac{1}{2}l(\varepsilon) \bigg\} \int_{0}^{\tau }\left\Vert U\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt \\ +\left( \alpha +\frac{\gamma \left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert }{2}\right) \int_{0}^{\tau }\left\Vert U_{t}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt+\frac{1}{2} \int_{0}^{\tau }\left\Vert U_{tt}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt \\ +\bigg\{\left( \frac{\varrho +\delta +\gamma +h_{0}}{2}\right) \varepsilon+h_{0}\bigg\} \int_{0}^{\tau }\left\Vert \nabla v\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt+h_{0}\int_{0}^{\tau}\left\Vert \nabla v(x, t )\right\Vert _{L^{2}(\Omega )}^{2}dt\\ +\frac{h_{0}}{2}\int_{0}^{\tau}\left\Vert \nabla U(x, t )\right\Vert _{L^{2}(\Omega )}^{2}dt+\frac{1}{2}\int_{0}^{\tau}h\circ \nabla U(t )dt+\frac{1}{2}\vert \Omega\vert\vert \partial \Omega \vert\int_{0}^{\tau}h\circ U(t )dt. \end{array} \end{equation} (4.17)

    Next, multiplying the differential equation in (4.1) by U_{ttt} and integrating over Q_{\tau } = \Omega \times (0, \tau), \ we obtain

    \begin{eqnarray} &&(U_{tttt}, U_{ttt})_{L^{2}\left( Q_{\tau }\right) }+\alpha (U_{ttt}, U_{ttt})_{L^{2}\left( Q_{\tau }\right) }+\beta (U_{tt}, U_{ttt})_{L^{2}\left( Q_{\tau }\right) }-\varrho (\Delta U, U_{ttt})_{L^{2}\left( Q_{\tau }\right) } \\ &&-\delta (\Delta U_{t}, U_{ttt})_{L^{2}\left( Q_{\tau }\right) }-\gamma (\Delta U_{t}, U_{ttt})_{L^{2}\left( Q_{\tau }\right) }+ (\Delta W, U_{ttt})_{L^{2}\left( Q_{\tau }\right) } = 0. \end{eqnarray} (4.18)

    An integration by parts in (4.18) yields

    \begin{equation} (U_{tttt}, U_{ttt})_{L^{2}\left( Q_{\tau }\right) } = \frac{1}{2}\left\Vert U_{\tau \tau \tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}, \end{equation} (4.19)
    \begin{equation} \alpha \left( U_{ttt}, U_{ttt}\right) _{L^{2}\left( Q_{\tau }\right) } = \alpha \int_{0}^{\tau }\left\Vert U_{ttt}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt, \end{equation} (4.20)
    \begin{equation} \beta \left( U_{tt}, U_{ttt}\right) _{L^{2}\left( Q_{\tau }\right) } = \frac{ \beta }{2}\left\Vert U_{\tau \tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}, \end{equation} (4.21)
    \begin{eqnarray} -\varrho \left( \Delta U, U_{ttt}\right) _{L^{2}\left( Q_{\tau }\right) } & = &\varrho \left( \nabla U(x, \tau ), \nabla U_{\tau \tau }(x, \tau )\right) _{L^{2}(\Omega )}-\frac{\varrho }{2}\left\Vert \nabla U_{\tau }\left( x, \tau \right) \right\Vert _{L^{2}(\Omega )}^{2} \\ &&-\varrho \int_{\partial \Omega }U_{\tau \tau }(x, \tau )\left( \int_{0}^{\tau }\int_{\Omega }U(\xi , \eta )d\xi d\eta \right) ds_{x} \\ &&+\varrho \int_{\partial \Omega }\int_{0}^{\tau }U_{tt}\left( x, t\right) \int_{\Omega }U\left( \xi , t\right) d\xi dtds_{x}, \end{eqnarray} (4.22)
    \begin{eqnarray} -\delta \left( \Delta U_{t}, U_{ttt}\right) _{L^{2}\left( Q_{\tau }\right) } & = &\delta \left( \nabla U_{\tau }(x, \tau ), \nabla U_{\tau \tau }(x, \tau )\right) _{L^{2}(\Omega )}-\delta \int_{0}^{\tau }\left\Vert \nabla U_{tt}(x, )\right\Vert _{L^{2}(\Omega )}^{2}dt \\ &&-\delta \int_{\partial \Omega }U_{\tau \tau }(x, \tau )\int_{\Omega }U\left( \xi , \tau \right) d\xi ds_{x} \\ &&+\delta \int_{0}^{\tau }\int_{\partial \Omega }U_{tt}\left( x, t\right) \int_{\Omega }U_{t}\left( \xi , t\right) d\xi ds_{x}dt, \end{eqnarray} (4.23)
    \begin{eqnarray} -\gamma \left( \Delta U_{tt}, U_{ttt}\right) _{L^{2}\left( Q_{\tau }\right) } & = &\frac{\gamma }{2}\left\Vert \nabla U_{\tau \tau }\left( x, \tau \right) \right\Vert _{L^{2}(\Omega )}^{2}-\gamma \int_{\partial \Omega }U_{\tau \tau }\left( x, \tau \right) \int_{\Omega }U_{\tau }\left( \xi , \tau \right) d\xi ds_{x} \\ &&+\gamma \int_{0}^{\tau }\int_{\partial \Omega }U_{tt}\left( x, t\right) \int_{\Omega }U_{tt}\left( \xi , t\right) d\xi ds_{x}dt. \end{eqnarray} (4.24)
    \begin{eqnarray} \left( \Delta W, U_{ttt}\right) _{L^{2}\left( Q_{\tau }\right) } & = &-H(\tau) \left( \nabla U(x, \tau ), \nabla U_{\tau \tau }(x, \tau )\right) _{L^{2}(\Omega )}\\ &&+\int_{\Omega}\nabla U_{\tau\tau}\int_{0}^{\tau}h(\tau-\sigma)(\nabla U(\tau)-\nabla U(\sigma))d\sigma dx \\ &&-\int_{0}^{\tau}(\nabla U_{tt}, \int_{0}^{t}h'(t-\sigma)(\nabla U(t)-\nabla U(\sigma))d\sigma)_{L^{2}(\Omega )}dt\\ &&+\int_{0}^{\tau}h(t)(\nabla U_{tt}, \nabla U(t))_{L^{2}(\Omega )}dt\\ &&+\int_{\partial \Omega }U_{\tau \tau }(x, \tau )\left( \int_{0}^{\tau }\int_{\Omega }W(\xi , \eta )d\xi d\eta \right) ds_{x} \\ &&- \int_{\partial \Omega }\int_{0}^{\tau }U_{tt}\left( x, t\right) \int_{\Omega }W\left( \xi , t\right) d\xi dtds_{x}, \end{eqnarray} (4.25)

    Substitution (4.19)-(4.25) into (4.18) we get the equality

    \begin{equation} \begin{array}{l} \frac{1}{2}\left\Vert U_{\tau \tau \tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}+\frac{\beta }{2}\left\Vert U_{\tau \tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}+\varrho \left( \nabla U(x, \tau ), \nabla U_{\tau \tau }(x, \tau )\right) _{L^{2}(\Omega )} \\ +\delta \left( \nabla U_{\tau }(x, \tau ), \nabla U_{\tau \tau }(x, \tau )\right) _{L^{2}(\Omega )}+\frac{\gamma }{2}\left\Vert \nabla U_{\tau \tau }\left( x, \tau \right) \right\Vert _{L^{2}(\Omega )}^{2}-\frac{\varrho }{2} \left\Vert \nabla U_{\tau }\left( x, \tau \right) \right\Vert _{L^{2}(\Omega )}^{2} \\ -H(\tau) \left( \nabla U(x, \tau ), \nabla U_{\tau \tau }(x, \tau )\right) _{L^{2}(\Omega )}\\ +\int_{\Omega}\nabla U_{\tau\tau}\int_{0}^{\tau}h(\tau-\sigma)(\nabla U(\tau)-\nabla U(\sigma))d\sigma dx\\ = -\alpha \int_{0}^{\tau }\left\Vert U_{ttt}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt+\delta \int_{0}^{\tau }\left\Vert \nabla U_{tt}(x, )\right\Vert _{L^{2}(\Omega )}^{2}dt \\ +\varrho \int_{\partial \Omega }U_{\tau \tau }(x, \tau )\left( \int_{0}^{\tau }\int_{\Omega }U(\xi , \eta )d\xi d\eta \right) ds_{x}-\varrho \int_{\partial \Omega }\int_{0}^{\tau }U_{tt}\left( x, t\right) \int_{\Omega }U\left( \xi , t\right) d\xi dtds_{x} \\ +\delta \int_{\partial \Omega }U_{\tau \tau }(x, \tau )\int_{\Omega }U\left( \xi , \tau \right) d\xi ds_{x}-\delta \int_{0}^{\tau }\int_{\partial \Omega }U_{tt}\left( x, t\right) \int_{\Omega }U_{t}\left( \xi , t\right) d\xi ds_{x}dt \\ +\gamma \int_{\partial \Omega }U_{\tau \tau }\left( x, \tau \right) \int_{\Omega }U_{\tau }\left( \xi , \tau \right) d\xi ds_{x}-\gamma \int_{0}^{\tau }\int_{\partial \Omega }U_{tt}\left( x, t\right) \int_{\Omega }U_{tt}\left( \xi , t\right) d\xi ds_{x}dt\\ -\int_{0}^{\tau}(\nabla U_{tt}, \int_{0}^{t}h'(t-\sigma)(\nabla U(t)-\nabla U(\sigma))d\sigma)_{L^{2}(\Omega )}dt\\ +\int_{0}^{\tau}h(t)(\nabla U_{tt}, \nabla U(t))_{L^{2}(\Omega )}dt +\int_{\partial \Omega }U_{\tau \tau }(x, \tau )\left( \int_{0}^{\tau }\int_{\Omega }W(\xi , \eta )d\xi d\eta \right) ds_{x} \\ - \int_{\partial \Omega }\int_{0}^{\tau }U_{tt}\left( x, t\right) \int_{\Omega }W\left( \xi , t\right) d\xi dtds_{x}. \end{array} \end{equation} (4.26)

    The right hand side of (4.26) can be bounded as follows

    \begin{eqnarray} &&\varrho \int_{\partial \Omega }U_{\tau \tau }(x, \tau )\left( \int_{0}^{\tau }\int_{\Omega }U\left( \xi , \eta \right) d\xi d\eta \right) ds_{x} \\ &\leq &\frac{\varrho }{2\varepsilon _{1}^{\prime }}\left( \varepsilon \left\Vert \nabla U_{\tau \tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}+l(\varepsilon )\left\Vert U_{\tau \tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}\right) \\ &&+\frac{\varrho }{2}\varepsilon _{1}^{\prime }T\left\vert \partial \Omega \right\vert \left\vert \Omega \right\vert \int_{0}^{\tau }\left\Vert U\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt, \end{eqnarray} (4.27)
    \begin{eqnarray} &&-\varrho \int_{\partial \Omega }\int_{0}^{\tau }U_{tt}\left( x, t\right) \int_{\Omega }U\left( \xi , t\right) d\xi dtds_{x} \\ &\leq &\frac{\varrho }{2}\int_{0}^{\tau }\left\{ \varepsilon \left\Vert \nabla U_{tt}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}+l(\varepsilon )\left\Vert U_{tt}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}\right\} dt \\ &&+\frac{\varrho }{2}\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \int_{0}^{\tau }\left\Vert U\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt, \end{eqnarray} (4.28)
    \begin{eqnarray} &&\delta \int_{\partial \Omega }U_{\tau \tau }(x, \tau )\int_{\Omega }U\left( \xi , \tau \right) d\xi ds_{x} \\ &\leq &\frac{\delta }{2\varepsilon _{2}^{\prime }}\left( \varepsilon \left\Vert \nabla U_{\tau \tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}+l(\varepsilon )\left\Vert U_{\tau \tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}\right) \\ &&+\frac{\delta }{2}\varepsilon _{2}^{\prime }T\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \left\Vert U(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}, \end{eqnarray} (4.29)
    \begin{eqnarray} &&-\delta \int_{0}^{\tau }\int_{\partial \Omega }U_{tt}\left( x, t\right) \int_{\Omega }U_{t}\left( \xi , t\right) d\xi ds_{x}dt \\ &\leq &\frac{\delta }{2}\varepsilon \int_{0}^{\tau }\left\Vert \nabla U_{tt}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt+\frac{\delta }{2} l(\varepsilon )\int_{0}^{\tau }\left\Vert U_{tt}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt \\ &&+\frac{\delta }{2}T\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \int_{0}^{\tau }\left\Vert U_{t}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt, \end{eqnarray} (4.30)
    \begin{eqnarray} &&\gamma \int_{\partial \Omega }U_{\tau \tau }\left( x, \tau \right) \int_{\Omega }U_{\tau }\left( \xi , \tau \right) d\xi ds_{x} \\ &\leq &\frac{\gamma }{2\varepsilon _{3}^{\prime }}\left( \varepsilon \left\Vert \nabla U_{\tau \tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}+l(\varepsilon )\left\Vert U_{\tau \tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}\right) \\ &&+\frac{\gamma }{2}\varepsilon _{3}^{\prime }T\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \left\Vert U_{\tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}, \end{eqnarray} (4.31)
    \begin{eqnarray} &&-\gamma \int_{0}^{\tau }\int_{\partial \Omega }U_{tt}\left( x, t\right) \int_{\Omega }U_{tt}\left( \xi , t\right) d\xi ds_{x}dt \\ &\leq &\frac{\gamma }{2}l(\varepsilon )\int_{0}^{\tau }\left\Vert U_{tt}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt+\frac{\gamma }{2} \varepsilon \int_{0}^{\tau }\left\Vert \nabla U_{tt}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt \\ &&+\frac{\gamma }{2}T\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \int_{0}^{\tau }\left\Vert U_{tt}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt, \end{eqnarray} (4.32)
    \begin{eqnarray} && \int_{\partial \Omega }U_{\tau \tau }(x, \tau )\left( \int_{0}^{\tau }\int_{\Omega }W\left( \xi , \eta \right) d\xi d\eta \right) ds_{x} \\ &\leq &(\frac{h_{0}}{2\varepsilon _{6}^{\prime }}+\frac{1}{2\varepsilon _{7}^{\prime }})\bigg( \varepsilon \left\Vert \nabla U_{\tau \tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}+l(\varepsilon )\left\Vert U_{\tau \tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}\bigg) \\ &&+\frac{h_{0}}{2}\varepsilon _{6}^{\prime }T\left\vert \partial \Omega \right\vert \left\vert \Omega \right\vert \int_{0}^{\tau }\left\Vert U\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt+\frac{1}{2}\varepsilon _{7}^{\prime }\left\vert \partial \Omega \right\vert \left\vert \Omega \right\vert \int_{0}^{\tau }h\circ U(t)dt, \end{eqnarray} (4.33)
    \begin{eqnarray} &&-\int_{\partial \Omega }\int_{0}^{\tau }U_{tt}\left( x, t\right) \int_{\Omega }W\left( \xi , t\right) d\xi dtds_{x} \\ &\leq &\frac{h_{0}+1 }{2}\int_{0}^{\tau }\left\{ \varepsilon \left\Vert \nabla U_{tt}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}+l(\varepsilon )\left\Vert U_{tt}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}\right\} dt \\ &&+\frac{h_{0} }{2}\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \int_{0}^{\tau }\left\Vert U\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt+\frac{1}{2}\left\vert \partial \Omega \right\vert \left\vert \Omega \right\vert \int_{0}^{\tau }h\circ U(t)dt. \end{eqnarray} (4.34)
    \begin{eqnarray} &&\int_{\Omega}\nabla U_{\tau\tau}\int_{0}^{\tau}h(\tau-\sigma)(\nabla U(\tau)-\nabla U(\sigma))d\sigma dx\\ &\geq&-\frac{1}{2\varepsilon'_{8}}h_{0} \left\Vert \nabla U_{\tau\tau}\left( x, \tau\right) \right\Vert _{L^{2}(\Omega )}^{2}-\frac{1}{2}\varepsilon'_{8}h\circ\nabla U(\tau), \end{eqnarray} (4.35)
    \begin{eqnarray} &&-H(\tau) \left( \nabla U(x, \tau ), \nabla U_{\tau \tau }(x, \tau )\right) _{L^{2}(\Omega )} \\ &\geq &-\frac{1}{2\varepsilon'_{9}}h_{0} \left\Vert \nabla U_{\tau\tau}\left( x, \tau\right) \right\Vert _{L^{2}(\Omega )}^{2}-\frac{1}{2}\varepsilon'_{9}h_{0}\left\Vert\nabla U\left( x, \tau\right) \right\Vert _{L^{2}(\Omega )}^{2}, \end{eqnarray} (4.36)
    \begin{eqnarray} &&\int_{0}^{\tau}h(t)\nabla U_{tt}(x, t)\nabla U(x, t)dt\\ &\leq&\frac{h(0)}{2}\int_{0}^{\tau} \left\Vert \nabla U_{tt}\left( x, \tau\right) \right\Vert _{L^{2}(\Omega )}^{2}dt+\frac{h(0)}{2}\int_{0}^{\tau} \left\Vert \nabla U\left( x, \tau\right) \right\Vert _{L^{2}(\Omega )}^{2}dt, \end{eqnarray} (4.37)
    \begin{eqnarray} &&\int_{0}^{\tau}\nabla U_{tt}\int_{0}^{t}h'(t-\sigma)(\nabla U(t)-\nabla U(\sigma))d\sigma dx\\ &\leq&-\frac{h(t)-h(0)}{2}\int_{0}^{\tau} \left\Vert \nabla U_{tt}\left( x, \tau\right) \right\Vert _{L^{2}(\Omega )}^{2}dt-\frac{1}{2}\int_{0}^{\tau}h'\circ\nabla U(t)dt. \end{eqnarray} (4.38)

    So, combining inequalities (4.27)-(4.38) and equality (4.26) we obtain

    \begin{equation} \begin{array}{l} \frac{1}{2}\left\Vert U_{\tau \tau \tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}+\left\{ \frac{\beta }{2}-\frac{\varrho }{2\varepsilon _{1}^{\prime }} l(\varepsilon )-\frac{\delta }{2\varepsilon _{2}^{\prime }}l(\varepsilon )- \frac{\gamma }{2\varepsilon'_{3}} l(\varepsilon )-(\frac{h_{0}}{2\varepsilon _{6}^{\prime }}+\frac{1}{2\varepsilon _{7}^{\prime }})l(\varepsilon)\right\} \left\Vert U_{\tau \tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2} \\ -\frac{\gamma }{2}\varepsilon _{3}^{\prime }T\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \left\Vert U_{\tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}-\frac{\delta }{2}\varepsilon _{2}^{\prime }T\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \left\Vert U(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2} \\ +\left\{ \frac{\gamma }{2}-\frac{\varrho }{2\varepsilon _{1}^{\prime }} \varepsilon -\frac{\delta }{2\varepsilon _{2}^{\prime }}\varepsilon -\frac{ \gamma }{2\varepsilon _{3}^{\prime }}\varepsilon+(\frac{h_{0}}{2\varepsilon _{6}^{\prime }}+\frac{1}{2\varepsilon _{7}^{\prime }})\varepsilon-(\frac{1}{2\varepsilon _{8}^{\prime }}+\frac{1}{2\varepsilon _{9}^{\prime }})h_{0} \right\} \left\Vert \nabla U_{\tau \tau }\left( x, \tau \right) \right\Vert _{L^{2}(\Omega )}^{2}\\ -\frac{\varepsilon'_{8}}{2}h\circ \nabla U(\tau)-\frac{\varepsilon'_{9}}{2}h_{0}\left\Vert \nabla U\left( x, \tau \right) \right\Vert _{L^{2}(\Omega )}^{2}-\frac{ \varrho }{2}\left\Vert \nabla U_{\tau }\left( x, \tau \right) \right\Vert _{L^{2}(\Omega )}^{2} \\ +\varrho \left( \nabla U(x, \tau ), \nabla U_{\tau \tau }(x, \tau )\right) _{L^{2}(\Omega )}+\delta \left( \nabla U_{\tau }(x, \tau ), \nabla U_{\tau \tau }(x, \tau )\right) _{L^{2}(\Omega )} \\ \leq -\alpha \int_{0}^{\tau }\left\Vert U_{ttt}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt+\left\{ \frac{\varrho }{2}l(\varepsilon )+\frac{ \delta }{2}l(\varepsilon )+\frac{\gamma }{2}l(\varepsilon )+\frac{\gamma }{2} T\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert+(\frac{h_{0}+1}{0})l(\varepsilon) \right\} \int_{0}^{\tau }\left\Vert U_{tt}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt \\ +\left\{ \frac{\varrho }{2}\varepsilon _{1}^{\prime }T\left\vert \partial \Omega \right\vert \left\vert \Omega \right\vert +(\frac{\varrho }{2}+\frac{h_{0}}{2}(1+T\varepsilon'_{6})) \left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \right\} \int_{0}^{\tau }\left\Vert U\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt+\frac{\delta }{2}T\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \int_{0}^{\tau }\left\Vert U_{t}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt \\ +\left\{ \delta +\frac{\varrho }{2}\varepsilon +\frac{\delta }{2}\varepsilon +\frac{\gamma }{2}\varepsilon+\frac{h_{0}+1}{2}\varepsilon+\frac{3h(0)}{2} \right\} \int_{0}^{\tau }\left\Vert \nabla U_{tt}(x, )\right\Vert _{L^{2}(\Omega )}^{2}dt\\ -\frac{1}{2}\int_{0}^{\tau }h'\circ \nabla U(t)dt-\frac{h(0)}{2}\int_{0}^{\tau }\left\Vert \nabla U\left( x, \tau \right) \right\Vert _{L^{2}(\Omega )}^{2}dt+\frac{1+\varepsilon'_{7}}{2}\left\vert \partial \Omega \right\vert \left\vert \Omega \right\vert\int_{0}^{\tau }h'\circ U(t)dt. \end{array} \end{equation} (4.39)

    Adding side to side (4.17) and (4.39), we obtain

    \begin{equation} \begin{array}{l} \left\{ \frac{\beta }{2}-\frac{\delta }{2}\varepsilon _{2}^{\prime }T\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert-\frac{1+\alpha}{2} \right\} \left\Vert U(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}+\frac{1}{ 2}\left\Vert U_{\tau \tau \tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}\\ +\left\{- \frac{1+\alpha}{2}-\frac{\gamma }{2}\varepsilon _{3}^{\prime }T\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \right\} \left\Vert U_{\tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2} \\ +\left\{ \frac{\beta }{2}-\frac{\varrho }{2\varepsilon _{1}^{\prime }} l(\varepsilon )-l(\varepsilon )\frac{\delta }{2\varepsilon _{2}^{\prime }}- \frac{\gamma }{2\varepsilon _{3}^{\prime }}l(\varepsilon )-(\frac{h_{0}}{2\varepsilon _{6}^{\prime }}+\frac{1}{2\varepsilon _{7}^{\prime }})-\frac{1}{2}\right\} \left\Vert U_{\tau \tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2} \\ +(U_{\tau \tau }(x, \tau ), U(x, \tau ))_{L^{2}\left( \Omega \right) }+\alpha \left( U_{\tau }(x, \tau ), U(x, \tau )\right) _{L^{2}(\Omega )}+\frac{\varrho }{2}\left\Vert \nabla v(x, 0)\right\Vert _{L^{2}(\Omega )}^{2} \\ +\varrho \left( \nabla U(x, \tau ), \nabla U_{\tau \tau }(x, \tau )\right) _{L^{2}(\Omega )}+\delta \left( \nabla U_{\tau }(x, \tau ), \nabla U_{\tau \tau }(x, \tau )\right) _{L^{2}(\Omega )} \\ +(\frac{\gamma }{2}-\frac{\varepsilon'_{9}}{2}h_{0})\left\Vert \nabla U(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}-\frac{\varrho }{2}\left\Vert \nabla U_{\tau }\left( x, \tau \right) \right\Vert _{L^{2}(\Omega )}^{2}-\frac{\varepsilon'_{8}}{2}h\circ \nabla U(\tau)\\ +\left\{ \frac{\gamma }{2}-\frac{\varrho }{ 2\varepsilon _{1}^{\prime }}\varepsilon -\frac{\delta }{2\varepsilon _{2}^{\prime }}-\frac{\gamma }{2\varepsilon _{3}^{\prime }}\varepsilon-(\frac{h_{0}}{2\varepsilon _{6}^{\prime }}+\frac{1}{2\varepsilon _{7}^{\prime }})\varepsilon-(\frac{1}{2\varepsilon _{8}^{\prime }}+\frac{1}{2\varepsilon _{9}^{\prime }})h_{0} \right\} \left\Vert \nabla U_{\tau \tau }\left( x, \tau \right) \right\Vert _{L^{2}(\Omega )}^{2} \\ \leq \left\{ \frac{\varrho }{2}\varepsilon _{1}^{\prime }T\left\vert \partial \Omega \right\vert \left\vert \Omega \right\vert +\frac{\varrho }{2} \left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert +\frac{ \varrho }{2}T^{2}\left( l(\varepsilon )+\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \right) +\frac{\delta }{2}\left( T^{2}l(\varepsilon )+\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \right) \right. \\ \left. +\frac{\gamma }{2}l(\varepsilon )T^{2}+\frac{h_{0}}{2}T^{2}(l(\varepsilon )+\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert)+\frac{1}{2}l(\varepsilon)\right\} \int_{0}^{\tau }\left\Vert U\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt \\ +\left( \alpha +\frac{\gamma \left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert }{2}+\frac{\delta }{2}T\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \right) \int_{0}^{\tau }\left\Vert U_{t}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt \\ +\left\{ \frac{1}{2}+l(\varepsilon )\frac{\varrho }{2}+\frac{\delta }{2} l(\varepsilon )+\frac{\gamma }{2}l(\varepsilon )+\frac{\gamma }{2} T\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \right\} \int_{0}^{\tau }\left\Vert U_{tt}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt \\ +\left\{ \frac{\delta }{2}\varepsilon +\frac{\gamma }{2}\varepsilon +\varepsilon \frac{\varrho }{2}+\delta+\frac{h_{0}+1}{2}\varepsilon+\frac{3h(0)}{2} \right\} \int_{0}^{\tau }\left\Vert \nabla U_{tt}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt\\ -\alpha \int_{0}^{\tau }\left\Vert U_{ttt}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt+\bigg(h_{0}+\left( \frac{\varrho +\delta +\gamma+h_{0} }{2}\right) \varepsilon\bigg) \int_{0}^{\tau }\left\Vert \nabla v\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt\\ +\frac{h_{0}+h(0)}{2}\int_{0}^{\tau}\left\Vert \nabla U(x, t )\right\Vert _{L^{2}(\Omega )}^{2}dt+\frac{1}{2}\int_{0}^{\tau}h\circ \nabla U(t )dt+\frac{1}{2}\vert \Omega\vert\vert \partial \Omega \vert\int_{0}^{\tau}h\circ U(t )dt\\ -\frac{1}{2}\int_{0}^{\tau }h'\circ \nabla U(t)dt+\frac{1+\varepsilon'_{7}}{2}\left\vert \partial \Omega \right\vert \left\vert \Omega \right\vert\int_{0}^{\tau }h'\circ U(t)dt. \end{array} \end{equation} (4.40)

    Now to deal with the last term on the right hand side of (4.40) , we define the function \theta \left(x, t\right) by the relation

    \begin{equation*} \theta \left( x, t\right) : = \int_{0}^{t}U(x, s)ds. \end{equation*}

    Hence using (4.12) it follows that

    \begin{equation} v\left( x, t\right) = \theta (x, \tau )-\theta \left( x, t\right) , \ \nabla v(x, 0) = \nabla \theta (x, \tau ), \end{equation} (4.41)

    and

    \begin{eqnarray} \left\Vert \nabla v\right\Vert _{L^{2}\left( Q_{\tau }\right) }^{2} & = &\left\Vert \nabla \theta (x, \tau )-\nabla \theta \left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2} \\ &\leq &2\left( \tau \left\Vert \nabla \theta (x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}+\left\Vert \nabla \theta \left( x, t\right) \right\Vert _{L^{2}\left( Q_{\tau }\right) }^{2}\right) . \end{eqnarray} (4.42)

    And make use of the following inequality

    \begin{equation} -\frac{\alpha }{2}\left\Vert U_{\tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}-\frac{\alpha }{2}\left\Vert U(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}\leq \alpha (U_{\tau }(x, \tau ), U(x, \tau ))_{L^{2}(\Omega )}, \end{equation} (4.43)
    \begin{equation} -\frac{1}{2}\left\Vert U_{\tau \tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}-\frac{1}{2}\left\Vert U(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}\leq (U_{\tau \tau }(x, \tau ), U(x, \tau ))_{L^{2}\left( \Omega \right) }, \end{equation} (4.44)
    \begin{equation} -\frac{\varrho }{2\varepsilon _{4}^{\prime }}\left\Vert \nabla U_{\tau \tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}-\frac{\varrho }{2}\varepsilon _{4}^{\prime }\left\Vert \nabla U(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}\leq \varrho \left( \nabla U(x, \tau ), \nabla U_{\tau \tau }(x, \tau )\right) _{L^{2}(\Omega )}, \end{equation} (4.45)
    \begin{equation} -\frac{\delta }{2\varepsilon _{5}^{\prime }}\left\Vert \nabla U_{\tau \tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}-\frac{\delta }{2}\varepsilon _{5}^{\prime }\left\Vert \nabla U_{\tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}\leq \delta \left( \nabla U_{\tau }(x, \tau ), \nabla U_{\tau \tau }(x, \tau )\right) _{L^{2}(\Omega )}. \end{equation} (4.46)
    \begin{eqnarray} m_{1}\left\Vert U(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}&\leq& m_{1}\left\Vert U(x, t)\right\Vert _{L^{2}(Q_{\tau })}^{2}+m_{1}\left\Vert U_{t}(x, t)\right\Vert _{L^{2}(Q_{\tau })}^{2} , \\ m_{2}\left\Vert U_{\tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}&\leq& m_{2}\left\Vert U_{t}(x, t)\right\Vert _{L^{2}(Q_{\tau })}^{2}+m_{2}\left\Vert U_{tt}(x, t)\right\Vert _{L^{2}(Q_{\tau })}^{2}, \\ m_{3}\left\Vert U_{\tau \tau }\left( x, \tau \right) \right\Vert _{L^{2}(\Omega )}^{2}&\leq& m_{3}\left\Vert U_{tt}(x, t)\right\Vert _{L^{2}(Q_{\tau })}^{2}+m_{3}\left\Vert U_{ttt}(x, t)\right\Vert _{L^{2}(Q_{\tau })}^{2} , \\ m_{4}\left\Vert \nabla U(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}&\leq& m_{4}\left\Vert \nabla U(x, t)\right\Vert _{L^{2}(Q_{\tau })}^{2}+m_{4}\left\Vert \nabla U_{t}(x, t)\right\Vert _{L^{2}(Q_{\tau })}^{2}, \end{eqnarray} (4.47)
    \begin{eqnarray} m_{5}\left\Vert \nabla U_{\tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}&\leq& m_{5}\left\Vert \nabla U_{t}(x, t)\right\Vert _{L^{2}(Q_{\tau })}^{2}+m_{5}\left\Vert \nabla U_{tt}(x, t)\right\Vert _{L^{2}(Q_{\tau })}^{2}, \\ m_{6}h\circ \nabla U (\tau)&\leq&m_{6}\left\Vert \nabla U_{t}(x, t)\right\Vert _{L^{2}(Q_{\tau })}^{2}+ m_{6}\int_{0}^{\tau}h\circ\nabla U (t)dt\\ m_{7}h\circ U (\tau)&\leq&m_{7}\left\Vert U_{t}(x, t)\right\Vert _{L^{2}(Q_{\tau })}^{2}+ m_{7}\int_{0}^{\tau}h\circ U (t)dt\\ -m_{8}h'\circ \nabla U (\tau)&\leq&m_{8}\left\Vert \nabla U_{t}(x, t)\right\Vert _{L^{2}(Q_{\tau })}^{2}- m_{8}\int_{0}^{\tau}h'\circ\nabla U (t)dt. \end{eqnarray} (4.48)

    Let

    \begin{equation} \left\{ \begin{array}{l} m_{1}: = \frac{1+\alpha}{2}+\frac{\delta }{2}\varepsilon _{2}^{\prime }T\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert, \\ \\ m_{2}: = 1+\frac{\gamma }{2}\varepsilon _{3}^{\prime }T\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert +\frac{\alpha }{2} \\ \\ m_{3}: = \bigg(\frac{\varrho }{2\varepsilon _{1}^{\prime }}+\frac{\delta }{2\varepsilon _{2}^{\prime }}+\frac{\gamma }{ 2\varepsilon _{3}^{\prime }}+\frac{h_{0} }{2\varepsilon _{6}^{\prime }}+\frac{1 }{2\varepsilon _{7}^{\prime }}\bigg)l(\varepsilon )+\frac{1}{2} \\ \\ m_{4}: = \frac{\varrho }{2}\varepsilon _{4}^{\prime }+\frac{h_{0}}{2} \\ m_{5}: = 1+\frac{\varrho }{2}+\frac{\delta }{2\varepsilon _{5}^{\prime }}\\ m_{6}: = \frac{1}{2}\varepsilon _{8}^{\prime }+1 , \quad m_{7}: = 1, \quad m_{8}: = 1, \end{array} \right. \end{equation} (4.49)

    choosing \varepsilon _{1}^{\prime }, \ \varepsilon _{2}^{\prime }, \varepsilon _{3}^{\prime }, \varepsilon _{4}^{\prime } , \varepsilon _{5}^{\prime }, \ \varepsilon _{6}^{\prime }, \varepsilon _{7}^{\prime }, \varepsilon _{8}^{\prime } and \varepsilon _{9}^{\prime } sufficiently large

    \begin{equation} \alpha_{0}: = \frac{\gamma }{2}-\frac{\varrho }{ 2\varepsilon _{1}^{\prime }}\varepsilon -\frac{\delta }{2\varepsilon _{2}^{\prime }}-\frac{\gamma }{2\varepsilon _{3}^{\prime }}\varepsilon-\frac{\varrho }{2\varepsilon _{4}^{\prime }}-\frac{\delta }{2\varepsilon _{5}^{\prime }}\varepsilon-(\frac{h_{0}}{2\varepsilon _{6}^{\prime }}+\frac{1}{2\varepsilon _{7}^{\prime }})\varepsilon-(\frac{1}{2\varepsilon _{8}^{\prime }}+\frac{1}{2\varepsilon _{9}^{\prime }})h_{0} > 0. \end{equation} (4.50)

    Since \tau is arbitrary we get that \alpha_{1}: = \frac{\varrho }{2}-2\tau \bigg(h_{0}+\varepsilon \frac{\left(\varrho +\delta +\gamma+h_{0} \right)}{2}\bigg) > 0, \ thus inequality (4.40) takes the form

    \begin{equation} \begin{array}{l} \frac{\beta }{2}\left\Vert U(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}+\frac{ 1}{2}\left\Vert U_{\tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}+\frac{ \beta }{2}\left\Vert U_{\tau \tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}+\frac{1}{2}\left\Vert U_{\tau \tau \tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2} \\ +\left\{ \frac{\varrho }{2}-2\tau(h_{0}+ \varepsilon\frac{\left( \varrho +\delta +\gamma+h_{0} \right)}{2}) \right\} \left\Vert \nabla \theta (x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}+\frac{\gamma }{2}\left\Vert \nabla U(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2} \\ +\left\Vert \nabla U_{\tau }\left( x, \tau \right) \right\Vert _{L^{2}(\Omega )}^{2}+\alpha_{0} \left\Vert \nabla U_{\tau \tau }\left( x, \tau \right) \right\Vert _{L^{2}(\Omega )}^{2} +h\circ \nabla U(\tau)+h\circ U(\tau)-h'\circ \nabla U(\tau)\\ \leq \left\{ \gamma _{1}^{\prime }+m_{1}\right\} \int_{0}^{\tau }\left\Vert U\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt+\left( \gamma _{2}^{\prime }+m_{1}+m_{2}+m_{7}\right) \int_{0}^{\tau }\left\Vert U_{t}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt \\ +\left\{ \gamma _{3}^{\prime }+m_{2}+m_{3}\right\} \int_{0}^{\tau }\left\Vert U_{tt}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt+\left( m_{3}-\alpha \right) \int_{0}^{\tau }\left\Vert U_{ttt}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt \\ +(2h_{0}+ \varepsilon\left( \varrho +\delta +\gamma+h_{0} \right)) \int_{0}^{\tau }\left\Vert \nabla \theta \left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt+(\gamma _{4}^{\prime } +m_{5}) \int_{0}^{\tau }\left\Vert \nabla U_{tt}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt \\ +(m_{4}+\frac{h_{0}+h(0)}{2})\int_{0}^{\tau }\left\Vert \nabla U\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt\\ +\left( m_{4}+m_{5}+m_{6}+m_{8}\right) \int_{0}^{\tau }\left\Vert \nabla U_{t}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}dt+(\frac{1}{2}+m_{6})\int_{0}^{\tau }h\circ \nabla U(t)dt \\ +(\gamma'_{5}+m_{7})\int_{0}^{\tau }h\circ U(t)dt-(\frac{1}{2}+m_{8})\int_{0}^{\tau }h'\circ \nabla U(t)dt, \end{array} \end{equation} (4.51)

    where

    \begin{equation} \left\{ \begin{array}{l} \gamma _{1}^{\prime }: = \frac{\varrho }{2}\varepsilon _{1}^{\prime }T\left\vert \partial \Omega \right\vert \left\vert \Omega \right\vert + \frac{\varrho }{2}\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert +\frac{\varrho }{2}T^{2}\left( l(\varepsilon )+\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \right)\\ \quad +\frac{\delta }{2} \left( T^{2}l(\varepsilon )+\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \right) +\frac{\gamma }{2}l(\varepsilon )T^{2} \\ \\ \gamma _{2}^{\prime }: = \alpha +\frac{\gamma \left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert }{2}+\frac{\delta }{2}T\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \\ \gamma _{3}^{\prime }: = \frac{1}{2}+l(\varepsilon )\frac{\varrho }{2}+\frac{ \delta }{2}l(\varepsilon )+\frac{\gamma }{2}l(\varepsilon )+\frac{\gamma }{2} T\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert\\ \gamma _{4}^{\prime }: = \frac{\delta }{2}\varepsilon +\frac{\gamma }{2}\varepsilon +\varepsilon \frac{\varrho }{2}+\delta \\ \gamma _{5}^{\prime }: = (1+\frac{1}{2}\varepsilon'_{7})\left\vert \Omega \right\vert \left\vert \partial \Omega \right\vert \end{array} \right. \end{equation} (4.52)

    We obtain

    \begin{eqnarray} &&\left\Vert U(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}+\left\Vert U_{\tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}+\left\Vert U_{\tau \tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}+\left\Vert U_{\tau \tau \tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2} \\ &&+\left\Vert \nabla U(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}+\left\Vert \nabla U_{\tau }\left( x, \tau \right) \right\Vert _{L^{2}(\Omega )}^{2}+\left\Vert \nabla U_{\tau \tau }\left( x, \tau \right) \right\Vert _{L^{2}(\Omega )}^{2} \\ &&+\left\Vert \nabla \theta (x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}+h\circ \nabla U(\tau)+h\circ U(\tau)-h'\circ \nabla U(\tau)\\ &\leq &D\int_{0}^{\tau }\bigg\{ \left\Vert U\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}+\left\Vert U_{t}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}+\left\Vert U_{tt}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}+h\circ U(t) \\ &&+\left\Vert \nabla U\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}+\left\Vert \nabla U_{t}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}+\left\Vert \nabla U_{tt}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}-h'\circ \nabla U(t) \\ && +\left\Vert U_{ttt}\left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}+\left\Vert \nabla \theta \left( x, t\right) \right\Vert _{L^{2}(\Omega )}^{2}+h\circ \nabla U(t)\bigg\} dt, \end{eqnarray} (4.53)

    where

    \begin{equation} D: = \frac{ \begin{array}{c} \max \left\{ (\gamma _{1}^{\prime }+m_{1}), \left( \gamma _{2}^{\prime }+m_{1}+m_{2}+m_{7}\right), \gamma _{3}^{\prime }+m_{2}+m_{3}, m_{3}-\alpha , \right. \\ \left. m_{4}+m_{5}+m_{6}+m_{8}, \gamma _{4}^{\prime } +m_{5}, (2h_{0}+\varepsilon \left( \varrho +\delta +\gamma+h_{0} \right)), \right. \\ \left.m_{4}+\frac{h_{0}+h(0)}{2}, \frac{1}{2}+m_{6}, \gamma'_{5}+m_{7}, \frac{1}{2}+m_{8} \right\} \end{array} }{ \begin{array}{c} \min \left\{ \frac{\beta }{2}, \frac{1}{2}, , \frac{\gamma }{2}, \alpha_{0} , \alpha_{1} \right\} \end{array} }. \end{equation} (4.54)

    Further, applying Gronwall's lemma to (4.53), we deduce that

    \begin{equation} \begin{array}{l} \left\Vert U(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}+\left\Vert U_{\tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}+\left\Vert U_{\tau \tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}+\left\Vert U_{\tau \tau \tau }(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2} \\ +\left\Vert \nabla U(x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}+\left\Vert \nabla U_{\tau }\left( x, \tau \right) \right\Vert _{L^{2}(\Omega )}^{2}+\left\Vert \nabla U_{\tau \tau }\left( x, \tau \right) \right\Vert _{L^{2}(\Omega )}^{2}\\ +\left\Vert \nabla \theta (x, \tau )\right\Vert _{L^{2}(\Omega )}^{2}+h\circ \nabla U(\tau)+h\circ U(\tau)-h'\circ \nabla U(\tau) \leq 0, \forall \tau \in \left[ 0, \alpha_{2}\right] . \end{array} \end{equation} (4.55)

    where \alpha_{2}: = \frac{\varrho }{4h_{0}+2\varepsilon \left(\varrho +\delta +\gamma+h_{0} \right) } .

    Proceeding in the same way for the intervals \tau \in \left[(m-1)\alpha_{2}, m\alpha_{2}\right] \ to cover the whole interval \left[0, T\right], and thus proving that U(x, \tau) = 0 , for all \tau in \left[0, T\right].\ Thus, the uniqueness is proved.

    Study of sound wave propagation, it should be noted that the Moore-Gibson-Thomson equation is one of the nonlinear sound equations that describes the propagation of sound waves in gases and liquids. The behavior of sound waves depends strongly on the average scattering, scattering and nonlinear effects. Arises from high-frequency ultrasound (HFU) modeling (see [16,25,41]). In this work, we have studied the solvability of the nonlocal mixed boundary value problem for the fourth order of Moore-Gibson-Thompson equation with source and memory terms. Galerkin's method was the main used tool for proving the solvability of the given non local problem. In the next work, we will try to using the same method with Hall-MHD equations which are nonlinear partial differential equation that arises in hydrodynamics and some physical applications (see for example [2,3,4,6]) by using some famous algorithms (see [8,14,15]).

    The fourth author extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant (R.G.P-2/1/42).

    This work does not have any conflicts of interest.



    [1] N. Ando, Hartman-Wintner's theorem and its applications, Calc. Var., 43 (2012), 389–402. http://doi.org/10.1007/s00526-011-0415-x doi: 10.1007/s00526-011-0415-x
    [2] J. L. Barbosa, M. Do Carmo, J. Eschenburg, Stability of hypersurfaces of constant mean curvature in Riemannian manifolds, Math. Z., 197 (1988), 123–138. https://doi.org/10.1007/BF01161634 doi: 10.1007/BF01161634
    [3] J. Choe, M. Koiso, Stable capillary hypersurfaces in a wedge, Pac. J. Math., 280 (2016), 1–15. http://doi.org/10.2140/pjm.2016.280.1 doi: 10.2140/pjm.2016.280.1
    [4] Y. He, H. Li, Integral formula of Minkowski type and new characterization of the Wulff shape, Acta. Math. Sin.-English Ser., 24 (2008), 697–704. https://doi.org/10.1007/s10114-007-7116-6 doi: 10.1007/s10114-007-7116-6
    [5] Y. He, H. Li, H. Ma, J. Ge, Compact embedded hypersurfaces with constant higher order anisotropic mean curvatures, Indiana Univ. Math. J., 58 (2009), 853–868. http://doi.org/10.1512/iumj.2009.58.3515 doi: 10.1512/iumj.2009.58.3515
    [6] M. Koiso, Uniqueness of stable closed non-smooth hypersurfaces with constant anisotropic mean curvature, arXiv.1903.03951.
    [7] M. Koiso, Uniqueness of closed equilibrium hypersurfaces for anisotropic surface energy and application to a capillary problem, Math. Comput. Appl., 24 (2019), 88. https://doi.org/10.3390/mca24040088 doi: 10.3390/mca24040088
    [8] M. Koiso, B. Palmer, Geometry and stability of surfaces with constant anisotropic mean curvature, Indiana Univ. Math. J., 54 (2005), 1817–1852. http://doi.org/10.1512/iumj.2005.54.2613 doi: 10.1512/iumj.2005.54.2613
    [9] M. Koiso, B. Palmer, Stability of anisotropic capillary surfaces between two parallel planes, Calc. Var., 25 (2006), 275–298. http://doi.org/10.1007/s00526-005-0336-7 doi: 10.1007/s00526-005-0336-7
    [10] M. Koiso, B. Palmer, Anisotropic capillary surfaces with wetting energy, Calc. Var., 29 (2007), 295–345. http://doi.org/10.1007/s00526-006-0066-5 doi: 10.1007/s00526-006-0066-5
    [11] M. Koiso, B. Palmer, Uniqueness theorems for stable anisotropic capillary surfaces, SIAM J. Math. Anal., 39 (2007), 721–741. https://doi.org/10.1137/060657297 doi: 10.1137/060657297
    [12] M. Koiso, B. Palmer, Anisotropic umbilic points and Hopf's theorem for surfaces with constant anisotropic mean curvature, Indiana Univ. Math. J., 59 (2010), 79–90. http://doi.org/10.1512/iumj.2010.59.4164 doi: 10.1512/iumj.2010.59.4164
    [13] H. Li, C. Xiong, Stability of capillary hypersurfaces with planar boundaries, J. Geom. Anal., 27 (2017), 79–94. https://doi.org/10.1007/s12220-015-9674-7 doi: 10.1007/s12220-015-9674-7
    [14] B. Palmer, Stability of the Wulff shape, Proc. Am. Math. Soc., 126 (1998), 3661–3667. http://doi.org/10.1090/S0002-9939-98-04641-3 doi: 10.1090/S0002-9939-98-04641-3
    [15] R. C. Reilly, The relative differential geometry of nonparametric hypersurfaces, Duke Math. J., 43 (1976), 705–721. http://doi.org/10.1215/S0012-7094-76-04355-6 doi: 10.1215/S0012-7094-76-04355-6
    [16] R. Schneider, Convex bodies: the Brunn-Minkowski theory, 2 Eds., New York: Cambridge University Press, 2014. https://doi.org/10.1017/CBO9781139003858
    [17] J. E. Taylor, Crystalline variational problems, Bull. Amer. Math. Soc., 84 (1978), 568–588. https://doi.org/10.1090/S0002-9904-1978-14499-1 doi: 10.1090/S0002-9904-1978-14499-1
    [18] H. Weyl, On the volume of tubes, Amer. J. Math., 61 (1939), 461–472. https://doi.org/10.2307/2371513 doi: 10.2307/2371513
    [19] W. L. Winterbottom, Equilibrium shape of a small particle in contact with a foreign substrate, Acta Metal., 15 (1967), 303–310. https://doi.org/10.1016/0001-6160(67)90206-4 doi: 10.1016/0001-6160(67)90206-4
    [20] G. Wulff, Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen, Zeitschrift für Krystallographie und Mineralogie, 34 (1901), 449–530. https://doi.org/10.1524/zkri.1901.34.1.449 doi: 10.1524/zkri.1901.34.1.449
  • This article has been cited by:

    1. Baoying Du, On three-dimensional Hall-magnetohydrodynamic equations with partial dissipation, 2022, 2022, 1687-2770, 10.1186/s13661-022-01587-0
    2. Dumitru Baleanu, Kamyar Hosseini, Soheil Salahshour, Khadijeh Sadri, Mohammad Mirzazadeh, Choonkil Park, Ali Ahmadian, The (2+1)-dimensional hyperbolic nonlinear Schrödinger equation and its optical solitons, 2021, 6, 2473-6988, 9568, 10.3934/math.2021556
    3. İbrahim TEKİN, Identification of the time-dependent lowest term in a fourth order in time partial differential equation, 2023, 72, 1303-5991, 500, 10.31801/cfsuasmas.1127250
    4. Mokhtar Kirane, Ala Eddine Draifia, Lotfi Jlali, Blowing‐up solutions for the Moorea–Gibson–Thompson equation with a viscoelastic memory and an external force, 2024, 47, 0170-4214, 12567, 10.1002/mma.10094
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2229) PDF downloads(188) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog