Research article Special Issues

Remarks on radial symmetry and monotonicity for solutions of semilinear higher order elliptic equations

  • Received: 15 July 2021 Accepted: 30 September 2021 Published: 12 October 2021
  • Half a century after the appearance of the celebrated paper by Serrin about overdetermined boundary value problems in potential theory and related symmetry properties, we reconsider semilinear polyharmonic equations under Dirichlet boundary conditions in the unit ball of $ \mathbb{R}^{n} $. We discuss radial properties (symmetry and monotonicity) of positive solutions of such equations and we show that, in conformal dimensions, the associated Green function satisfies elegant reflection and symmetry properties related to a suitable Kelvin transform (inversion about a sphere). This yields an alternative formula for computing the partial derivatives of solutions of polyharmonic problems. Moreover, it gives some hints on how to modify a counterexample by Sweers where radial monotonicity fails: we numerically recover strict radial monotonicity for the biharmonic equation in the unit ball of $ \mathbb{R}^{4} $.

    Citation: Filippo Gazzola, Gianmarco Sperone. Remarks on radial symmetry and monotonicity for solutions of semilinear higher order elliptic equations[J]. Mathematics in Engineering, 2022, 4(5): 1-24. doi: 10.3934/mine.2022040

    Related Papers:

  • Half a century after the appearance of the celebrated paper by Serrin about overdetermined boundary value problems in potential theory and related symmetry properties, we reconsider semilinear polyharmonic equations under Dirichlet boundary conditions in the unit ball of $ \mathbb{R}^{n} $. We discuss radial properties (symmetry and monotonicity) of positive solutions of such equations and we show that, in conformal dimensions, the associated Green function satisfies elegant reflection and symmetry properties related to a suitable Kelvin transform (inversion about a sphere). This yields an alternative formula for computing the partial derivatives of solutions of polyharmonic problems. Moreover, it gives some hints on how to modify a counterexample by Sweers where radial monotonicity fails: we numerically recover strict radial monotonicity for the biharmonic equation in the unit ball of $ \mathbb{R}^{4} $.



    加载中


    [1] A. D. Alexandrov, Uniqueness theorem for surfaces in the large, Vestnik Leningradskogo Universiteta, 11 (1956), 5–17.
    [2] A. D. Alexandrov, A characteristic property of spheres, Annali di Matematica, 58 (1962), 303–315. doi: 10.1007/BF02413056
    [3] E. Berchio, F. Gazzola, T. Weth, Radial symmetry of positive solutions to nonlinear polyharmonic Dirichlet problems, J. reine angew. Math., 620 (2008), 165–183.
    [4] H. Berestycki, L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat., 22 (1991), 1–37. doi: 10.1007/BF01244896
    [5] T. Boggio, Sulle funzioni di Green d'ordine m, Rend. Circ. Matem. Palermo, 20 (1905), 97–135. doi: 10.1007/BF03014033
    [6] R. Dalmasso, Symmetry properties in higher order semilinear elliptic equations, Nonlinear Anal. Theor., 24 (1995), 1–7. doi: 10.1016/0362-546X(94)E0030-K
    [7] R. Dalmasso, Existence and uniqueness results for polyharmonic equations, Nonlinear Anal. Theor., 36 (1999), 131–137. doi: 10.1016/S0362-546X(98)00049-2
    [8] F. Gazzola, H.-C. Grunau, Radial entire solutions for supercritical biharmonic equations, Math. Ann., 334 (2006), 905–936. doi: 10.1007/s00208-005-0748-x
    [9] F. Gazzola, H.-C. Grunau, G. Sweers, Polyharmonic boundary value problems: positivity preserving and nonlinear higher order elliptic, Springer Science & Business Media, 2010.
    [10] B. Gidas, W.-M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Commun. Math. Phys., 68 (1979), 209–243. doi: 10.1007/BF01221125
    [11] H.-C. Grunau, G. Sweers, Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions, Math. Ann., 307 (1996), 589–626.
    [12] H.-C. Grunau, G. Sweers, Positivity properties of elliptic boundary value problems of higher order, Nonlinear Anal. Theor., 30 (1997), 5251–5258. doi: 10.1016/S0362-546X(96)00164-2
    [13] S. Mayboroda, V. Maz'ya, Regularity of solutions to the polyharmonic equation in general domains, Invent. Math., 196 (2014), 1–68. doi: 10.1007/s00222-013-0464-1
    [14] C. Nitsch, C. Trombetti, The classical overdetermined Serrin problem, Complex Var. Elliptic Equ., 63 (2018), 1107–1122. doi: 10.1080/17476933.2017.1410798
    [15] J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304–318. doi: 10.1007/BF00250468
    [16] G. Sweers, No Gidas-Ni-Nirenberg type result for semilinear biharmonic problems, Math. Nachr., 246 (2002), 202–206.
    [17] W. C. Troy, Symmetry properties in systems of semilinear elliptic equations, J. Differ. Equations, 42 (1981), 400–413. doi: 10.1016/0022-0396(81)90113-3
    [18] H. F. Weinberger, Remark on the preceding paper of Serrin, Arch. Rational Mech. Anal., 43 (1971), 319–320. doi: 10.1007/BF00250469
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1942) PDF downloads(98) Cited by(1)

Article outline

Figures and Tables

Figures(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog