We study the existence of solutions to the cubic Schrödinger system
$ -\Delta u_i = \sum\limits_{j = 1}^m \beta_{ij} u_j^2u_i + \lambda_i u_i\ \hbox{in}\ \Omega,\ u_i = 0\ \hbox{on}\ \partial\Omega,\ i = 1,\dots,m, $
when $ \Omega $ is a bounded domain in $ \mathbb R^4, $ $ \lambda_i $ are positive small numbers, $ \beta_{ij} $ are real numbers so that $ \beta_{ii} > 0 $ and $ \beta_{ij} = \beta_{ji} $, $ i\neq j $. We assemble the components $ u_i $ in groups so that all the interaction forces $ \beta_{ij} $ among components of the same group are attractive, i.e., $ \beta_{ij} > 0 $, while forces among components of different groups are repulsive or weakly attractive, i.e., $ \beta_{ij} < \overline\beta $ for some $ \overline\beta $ small. We find solutions such that each component within a given group blows-up around the same point and the different groups blow-up around different points, as all the parameters $ \lambda_i $'s approach zero.
Citation: Simone Dovetta, Angela Pistoia. Solutions to a cubic Schrödinger system with mixed attractive and repulsive forces in a critical regime[J]. Mathematics in Engineering, 2022, 4(4): 1-21. doi: 10.3934/mine.2022027
We study the existence of solutions to the cubic Schrödinger system
$ -\Delta u_i = \sum\limits_{j = 1}^m \beta_{ij} u_j^2u_i + \lambda_i u_i\ \hbox{in}\ \Omega,\ u_i = 0\ \hbox{on}\ \partial\Omega,\ i = 1,\dots,m, $
when $ \Omega $ is a bounded domain in $ \mathbb R^4, $ $ \lambda_i $ are positive small numbers, $ \beta_{ij} $ are real numbers so that $ \beta_{ii} > 0 $ and $ \beta_{ij} = \beta_{ji} $, $ i\neq j $. We assemble the components $ u_i $ in groups so that all the interaction forces $ \beta_{ij} $ among components of the same group are attractive, i.e., $ \beta_{ij} > 0 $, while forces among components of different groups are repulsive or weakly attractive, i.e., $ \beta_{ij} < \overline\beta $ for some $ \overline\beta $ small. We find solutions such that each component within a given group blows-up around the same point and the different groups blow-up around different points, as all the parameters $ \lambda_i $'s approach zero.
[1] | N. Akhmediev, A. Ankiewicz, Partially coherent solitons on a finite background, Phys. Rev. Lett., 82 (1999), 2661. doi: 10.1103/PhysRevLett.82.2661 |
[2] | T. Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differ. Geom., 11 (1976), 573–598. |
[3] | T. Bartsch, Bifurcation in a multicomponent system of nonlinear Schrödinger equations, J. Fixed Point Theory Appl., 13 (2013), 37–50. doi: 10.1007/s11784-013-0109-4 |
[4] | G. Bianchi, H. Egnell, A note on the Sobolev inequality, J. Funct. Anal., 100 (1991), 18–24. doi: 10.1016/0022-1236(91)90099-Q |
[5] | H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), 437–477. doi: 10.1002/cpa.3160360405 |
[6] | J. Byeon, O. Kwon, J. Seok, Positive vector solutions for nonlinear Schrödinger systems with strong interspecies attractive forces, J. Math. Pure. Appl., 143 (2020), 73–115. doi: 10.1016/j.matpur.2020.09.008 |
[7] | J. Byeon, Y. Sato, Z. Q. Wang, Pattern formation via mixed attractive and repulsive interactions for nonlinear Schrödinger systems, J. Math. Pure. Appl., 106 (2016), 477–511. doi: 10.1016/j.matpur.2016.03.001 |
[8] | Z. Chen, C. S. Lin, Asymptotic behavior of least energy solutions for a critical elliptic system, Int. Math. Res. Not., 21 (2015), 11045–11082. |
[9] | Z. Chen, W. Zou, Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent, Arch. Rational Mech. Anal., 205 (2012), 515–551. doi: 10.1007/s00205-012-0513-8 |
[10] | M. Clapp, A. Szulkin, A simple variational approach to weakly coupled competitive elliptic systems, Nonlinear Differ. Equ. Appl., 26 (2019), 26. doi: 10.1007/s00030-019-0572-8 |
[11] | Y. Guo, S. Luo, W. Zuo, The existence, uniqueness and nonexistence of the ground state to the $N$-coupled Schrödinger systems in $\Bbb R^n$ $(n\leqslant4)$, Nonlinearity, 31 (2018), 314–339. doi: 10.1088/1361-6544/aa8ca9 |
[12] | Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 159–174. |
[13] | A. M. Micheletti, A. Pistoia, Non degeneracy of critical points of the Robin function with respect to deformations of the domain, Potential Anal., 40 (2014), 103–116. doi: 10.1007/s11118-013-9340-2 |
[14] | M. Musso, A. Pistoia, Multispike solutions for a nonlinear elliptic problem involving the critical Sobolev exponent, Indiana U. Math. J., 51 (2002), 541–579. |
[15] | B. Noris, H. Tavares, S. Terracini, G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Commun. Pure Appl. Math., 63 (2010), 267–302. doi: 10.1002/cpa.20309 |
[16] | A. Pistoia, N. Soave, On Coron's problem for weakly coupled elliptic systems, P. Lond. Math. Soc., 116 (2018), 33–67. doi: 10.1112/plms.12073 |
[17] | A. Pistoia, H. Tavares, Spiked solutions for Schrödinger systems with Sobolev critical expnent: the cases of competitive and weakly cooperative interactions, J. Fixed Point Theory Appl., 19 (2017), 407–446. doi: 10.1007/s11784-016-0360-6 |
[18] | O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal., 89 (1990), 1–52. doi: 10.1016/0022-1236(90)90002-3 |
[19] | Y. Sato, Z. Q. Wang, Least energy solutions for nonlinear Schrödinger systems with mixed attractive and repulsive couplings, Adv. Nonlinear Stud., 15 (2015), 1–22. doi: 10.1515/ans-2015-0101 |
[20] | Y. Sato, Z. Q. Wang, Multiple positive solutions for Schrödinger systems with mixed couplings, Calc. Var., 54 (2015), 1373–1392. doi: 10.1007/s00526-015-0828-z |
[21] | N. Soave, On existence and phase separation of solitary waves for nonlinear Schrödinger systems modelling simultaneous cooperation and competition, Calc. Var., 53 (2015), 689–718. doi: 10.1007/s00526-014-0764-3 |
[22] | N. Soave, H. Tavares, New existence and symmetry results for least energy positive solutions of Schrödinger systems with mixed competition and cooperation terms, J. Differ. Equations, 261 (2016), 505–537. doi: 10.1016/j.jde.2016.03.015 |
[23] | G. Talenti, Best constant in Sobolev inequality, Annali di Matematica, 110 (1976), 353–372. doi: 10.1007/BF02418013 |
[24] | H. Tavares, S. You, Existence of least energy positive solutions to Schrödinger systems with mixed competition and cooperation terms: the critical case, Calc. Var., 59 (2020), 26. doi: 10.1007/s00526-019-1694-x |
[25] | E. Timmermans, Phase separation of Bose-Einstein condensates, Phys. Rev. Lett., 81 (1998), 5718–5721. doi: 10.1103/PhysRevLett.81.5718 |
[26] | J. Wei, Y. Wu, Ground states of nonlinear Schrödinger systems with mixed couplings, J. Math. Pure. Appl., 141 (2020), 50–88. doi: 10.1016/j.matpur.2020.07.012 |