Citation: Takeyuki Nagasawa, Kohei Nakamura. Asymptotic analysis for non-local curvature flows for plane curves with a general rotation number[J]. Mathematics in Engineering, 2021, 3(6): 1-26. doi: 10.3934/mine.2021047
[1] | Daniel N. Riahi, Saulo Orizaga . On rotationally driven nonlinear inclined polymeric jet with gravity effect. Mathematics in Engineering, 2022, 4(2): 1-18. doi: 10.3934/mine.2022014 |
[2] | Tatsuya Miura . Polar tangential angles and free elasticae. Mathematics in Engineering, 2021, 3(4): 1-12. doi: 10.3934/mine.2021034 |
[3] | Bruno Bianchini, Giulio Colombo, Marco Magliaro, Luciano Mari, Patrizia Pucci, Marco Rigoli . Recent rigidity results for graphs with prescribed mean curvature. Mathematics in Engineering, 2021, 3(5): 1-48. doi: 10.3934/mine.2021039 |
[4] | Qiang Guang, Qi-Rui Li, Xu-Jia Wang . Flow by Gauss curvature to the Lp dual Minkowski problem. Mathematics in Engineering, 2023, 5(3): 1-19. doi: 10.3934/mine.2023049 |
[5] | Francesca Tedeschi, Giulio G. Giusteri, Leonid Yelash, Mária Lukáčová-Medvid'ová . A multi-scale method for complex flows of non-Newtonian fluids. Mathematics in Engineering, 2022, 4(6): 1-22. doi: 10.3934/mine.2022050 |
[6] | Eleonora Cinti, Roberto Ognibene, Berardo Ruffini . A quantitative stability inequality for fractional capacities. Mathematics in Engineering, 2022, 4(5): 1-28. doi: 10.3934/mine.2022044 |
[7] | Jerome D. Wettstein . Half-harmonic gradient flow: aspects of a non-local geometric PDE. Mathematics in Engineering, 2023, 5(3): 1-38. doi: 10.3934/mine.2023058 |
[8] | Virginia Agostiniani, Lorenzo Mazzieri, Francesca Oronzio . A geometric capacitary inequality for sub-static manifolds with harmonic potentials. Mathematics in Engineering, 2022, 4(2): 1-40. doi: 10.3934/mine.2022013 |
[9] | Alessandra De Luca, Veronica Felli . Unique continuation from the edge of a crack. Mathematics in Engineering, 2021, 3(3): 1-40. doi: 10.3934/mine.2021023 |
[10] | Anoumou Attiogbe, Mouhamed Moustapha Fall, El Hadji Abdoulaye Thiam . Nonlocal diffusion of smooth sets. Mathematics in Engineering, 2022, 4(2): 1-22. doi: 10.3934/mine.2022009 |
In this paper, we deal with curvature flows comprising non-local terms for plane curves with a general rotation number. Let f be an R2-valued function on R/L(t)Z×[0,T) such that for a fixed t∈[0,T), it is an arc-length parametrization of a closed plane curve with total length L(t). In the following text, we simply denote L(t) as L in many cases. To explain the curvature flow that is considering in this work, we introduce a certain geometric quantity. For a fixed t∈[0,T), s∈R/LZ is an arc-length parameter. Then, τ=∂sf and κ=∂2sf are the unit tangent vector and the curvature vector respectively. The vector ν is a unit normal vector given by rotating τ counter-clockwise by π2. The curvature κ and its deviation ˜κ are given by
κ=κ⋅ν,˜κ=κ−1L∫L0κds. |
Here, ˜κ is a non-local quantity. The equation we consider is of the following form:
∂tf=(˜κ−gL)ν. |
Here, we assume that the function g is a scale-invariant non-local quantity determined by f. That is, set fλ(s)=1λf(λs) (s∈R/λ−1LZ), then,
g(fλ)=g(f). |
Here we study three cases of g:
(AP) If we set g≡0, then our equation represents the area-preserving flow. In fact, we set A as
A=−12∫L0f⋅νds |
which is the enclosed area when Imf is a simple curve. Consequently, it holds that
dAdt=0. |
(LP) Let g=L(∫L0κds)−1∫L0˜κ2ds. Here, the equation represents the length-preserving flow:
dLdt=0. |
(JP) Jiang-Pan considered an equation with g=L22A−∫L0κds in [5]. Here, the isoperimetric ratio does not increase along with the flow:
ddtL2A=−2LA∫L0‖∂tf‖2ds. |
Let
n=12π∫L0κds |
be the rotation number. For classical solutions, the rotation number n is independent of t. There are a multitude of literature available considering the case when n=1 in the above equations. First of all, we should mention Gage's result [3]. Assume that Imf(0) is a strictly convex, closed curve with a rotation number equal to 1 in the class of C2. Then, the solution f with the initial data f(0) exists globally in time, and Imf(t) converges to a circle with a surrounding area A(0) as t→∞. Similar results for (LP) and (JP) were proved by [6] and [5] respectively under the convexity condition. The authors considered flows without the convexity condition in [7,8]. Instead of convexity, we assume the global existence of the solution. Then the solution of (AP), (LP), or (JP) converges to a circle as t→∞ exponentially. As a result, the curvature uniformly converges to a positive constant, and thus, the curve becomes convex in finite time. In our previous works, the isoperimetric deficit
I−1=1−4πAL2 |
played an important role. First, we show the decay of I−1. Set
Iℓ=L2ℓ+1∫L0|˜κ(ℓ)|2ds for ℓ∈{0}∪N. |
In [7], we showed the inequality
Ij≦C(Iℓ−j2−1Iℓ+Iℓ−jℓ+1−1Ij+1ℓ+1ℓ) | (1.1) |
for an integer j∈[0,ℓ] with a positive constant C=C(j,ℓ) independent of the total length of curve. Since I−1 is small for a sufficiently large t, we can regard this inequality as an embedding with a small embedding constant. We showed the exponential decay of Iℓ using the standard energy method, combining the above inequality. Finally, using the decay of Iℓ, we showed the convergence of Imf to a circle.
In this paper we study the case of n>1, when the isomerimetric deficit is
I−1=1−4nπAL2. |
The isoperimetric inequality shows I−1≧0 when n=1. However, I−1 is not necessarily non-negative for n>1. This implies the technique used in [7,8] is not applicable for n>1. In spite of this, I−1 gives us some useful information. For example, we can show that if I−1 is negative for t=0, then the solution blows up in finite time. See our first main result, Theorem 3.1. This implies I−1≧0 for global solutions, and that sounds a good information. However, the inequality (1.1) does not hold for n>1. There are at least two approaches for dealing with this difficulty. One is to give a proof without using (1.1), and another is to show an alternative inequality to (1.1). In this paper, we show that both are in success. For the second approach, we use a geometric quantity which has never been considered before, given as follows:
˜I−1=1L‖2πnL(f−1L∫L0fds)+ν‖2L2. |
Then we can show
Ij≦C(˜Iℓ−j2−1Iℓ+˜Iℓ−jℓ+1−1Ij+1ℓ+1ℓ). | (1.2) |
We prepare several inequalities and estimates for closed curves with a rotation number n, in § 2.1. And we describe some basic properties of the flows (AP), (LP) and (JP), in § 2.2. Using these, in § 3, we discuss blow-up solutions with blow-up time estimates, blow-up quantities, and blow-up rates. In § 4, the convergence to an n-fold circle of global solutions is proved without using (1.2). Finally, we show (1.2) in the final section.
In this section, we provide several estimates and inequalities for plane curves. Those in § 2.1 hold for curves which are not necessarily solutions of the flows. We derive the basic properties of flows in § 2.2.
Let f=(f1,f2) be an arc-length parametrization of a plane curve with the rotation number n≧1. Set
f=f1+if2,ν=ν1+iν2=−f′2+if′1=if′. |
The functions φk=1√Lexp(2πiksL) for k∈Z generate the standard complete orthogonal system of L2(R/LZ). Let ˆf(k) be the Fourier coefficient of f. Subsequently, we can derive the following relations in a manner similar to [7,Corollary 2.1], where we dealt with the case of n=1. The difference is just "n" in (2.3) which comes exactly from the definition of the rotation number. We can find similar argument in [1,10]
Lemma 2.1.
∑k∈Zk|ˆf(k)|2= LAπ, | (2.1) |
∑k∈Zk2|ˆf(k)|2= (L2π)2∫L0κ0ds=L34π2, | (2.2) |
∑k∈Zk3|ˆf(k)|2= (L2π)3∫L0κds=nL34π2, | (2.3) |
∑k∈Zk4|ˆf(k)|2= (L2π)4∫L0κ2ds, | (2.4) |
∑k∈Zk5|ˆf(k)|2= (L2π)5∫L0κ3ds, | (2.5) |
∑k∈Zk6|ˆf(k)|2= (L2π)6∫L0{κ4+(κ′)2}ds. | (2.6) |
Note that we have
∑k∈Zk2(k−n)|ˆf(k)|2=0 | (2.7) |
from (2.2) and (2.3). The above is very useful for our analysis.
Lemma 2.2. We have
I0= 16π4L3∑k∈Zk3(k−n)|ˆf(k)|2 | (2.8) |
= 16π4L3∑k∈Zk2(k−n)2|ˆf(k)|2. | (2.9) |
Proof. We obtain (2.8) as
I0= L∫L0˜κ2ds=L∫L0˜κκds=L(∫L0κ2ds−2πnL∫L0κds)= 16π4L3∑k∈Zk3(k−n)|ˆf(k)|2 |
from (2.4) and (2.3). Combining this with (2.7), we obtain (2.9).
Though I0 must be non-negative by the definition, it is not obvious to see that from the first expression (2.8). However, it can be seen from the second one (2.9). Furthermore, we see from (2.9) that I0=0 if and only if Imf is an n-fold circle.
The isoperimetric inequality holds even if n is not 1.
Lemma 2.3. We have L2−4πA≧0.
Proof. It follows from (2.2) and (2.1) that
L2−4πA=4π2L(L34π2−LAπ)=4π2L∑k∈Zk(k−1)|ˆf(k)|2≧0. |
Similarly, I−1 has two expressions.
Lemma 2.4. We have
I−1=4π2L3∑k∈Zk(k−n)|ˆf(k)|2=−4π2nL3∑k∈Z∖{0}k(k−n)2|ˆf(k)|2. |
Proof. It follows from (2.2) and (2.1) that
I−1=1−4πnAL2=4π2L3(L34π2−nLAπ)=4π2L3∑k∈Zk(k−n)|ˆf(k)|2. |
The second expression of I−1 is obtained from the above and (2.7).
Since k(k−n) is not necessarily non-negative when n>1, we know the same holds for I−1. However, the modulus of I−1 can be estimated by I0 for n≧1 as follows. This is Wirtinger's inequality when n=1.
Lemma 2.5. It holds that 4π2n|I−1|≦I0.
Proof. From Lemmas 2.2–2.4 we obtain
I0±4π2nI−1= 16π4L3∑k∈Z{k2(k−n)2∓k(k−n)2}|ˆf(k)|2= 16π4L3∑k∈Zk(k∓1)(k−n)2|ˆf(k)|2≧0. |
Here, we use k(k∓1)≧0 for k∈Z.
In this subsection, we derive the basic properties of the flows, which we use in following sections. Let f be a classical solution of one of (AP), (LP), or (JP) on [0,T), and let T be the maximum existence time. Since dLdt=−∫L0∂tf⋅κds, we have
dL2dt=−2L∫L0(˜κ−gL)κds=−2L∫L0˜κ2ds+4πng, |
that is,
dL2dt+2I0=4πng. | (2.10) |
Similarly, we have
dAdt=−∫L0∂tf⋅νds=−∫L0(˜κ−gL)ds=g. | (2.11) |
It follows from the above that
ddt(L2I−1)+2I0=ddt(L2−4πnA)+2I0=0. | (2.12) |
From these, we summarize the basic properties of each solution as follows.
Proposition 2.1. Assume that the initial curve is smooth, and that A(0) is positive. Let f be a classical solution of one of (AP), (LP), or (JP) on [0,T) and let T be the maximum existence time. Then, the following holds for t∈(0,T).
1). For solutions of (AP),
dAdt=0,A≡A(0)>0,dL2dt≦0,dI−1dt≦0. |
2). For solutions of (LP),
dAdt≧0,A≧A(0)>0,dL2dt=0,dI−1dt≦0. |
3). For solutions of (JP),
A>0,dI−1dt≦0. |
4). For solutions of (AP), (LP), (JP),
1−n≦I−1≦I−1(0). |
In other words,
4π≦L2A≦L(0)2A(0). |
Proof. In the cases of (AP) and (LP), the signs of dAdt and dL2dt immediately follow from (2.11) and (2.10). Therefore, A>0 and
dI−1dt=−ddt4πnAL2=−4πnL2dAdt+4πnAL4dL2dt≦0. |
In the case of (JP), we prove the positivity of A by applying the contradiction argument. In this case,
g=L2I−12A. | (2.13) |
It follows from (2.11) that
dA2dt=2Ag=L2I−1. | (2.14) |
Assume that A(t0)2=0 for some first time t0∈(0,T). Since A2≧0, we have
dA2dt(t0)=0. | (2.15) |
Since A(0)2>0, there exists t1∈(0,t0) such that
dA2dt(t1)<0. | (2.16) |
It follows from (2.14) and (2.12) that
d2A2dt2=ddt(L2I−1)=−2I0≦0. |
Therefore, by (2.16)
dA2dt(t0)=dA2dt(t1)+∫t0t1d2A2dt2dt≦dA2dt(t1)<0. |
This contradicts (2.15). Hence, A>0 on (0,T). Using (2.12), (2.10), I−1−1=−4πnAL2, and (2.13), we have
L2dI−1dt= −I−1dL2dt−2I0= −I−1(4πng−2I0)−2I0=−4πngI−1+2(I−1−1)I0= −4πnL2(L2gI−1+2AI0)=−4πnL2(L4I2−12A+2AI0)≦0. |
Since I−1 is non-increasing, we have I−1≦I−1(0). Lemma 2.3 gives us
I−1=1−4πnAL2=1−n+n(1−4πAL2)≧1−n. |
The non-positivity of I−1(0) implies that the blow-up phenomena occurs in finite time.
Theorem 3.1. Let f be a classical solution of one of (AP), (LP), or (JP) on [0,T) and let T be the maximum existence time. Assume that the initial curve is smooth, and satisfies A(0)>0, I−1(0)<0. Then, the solution blows up in finite time. The blow-up time T is estimated from above as follows:
(AP)T≦L(0)2−4πA(0)−8π2nI−1(0),
(LP)T≦L(0)2−4πA(0)−8π2I−1(0),
(JP)T≦L(0)2−8π2nI−1(0).
Proof. In the case of (AP), g≡0. It follows from Proposition 2.1 that I−1(t)≦I−1(0)<0. By (2.10) and Lemma 2.5, we have
dL2dt=−2I0(t)≦8π2nI−1(t)≦8π2nI−1(0). |
Integrating this from 0 to t∈(0,T), and using Lemma 2.3, we obtain
4πA(0)−L2(0)=4πA(t)−L2(0)≦L2(t)−L2(0)≦8π4nI−1(0)t. |
Since the first side is non-positive by the isoperimetric inequality (Lemma 2.3), t must satisfy
t≦L(0)2−4πA(0)−8π2nI−1(0). |
In the case of (LP), g=I02πn≧0. Proposition 2.1 shows I−1(t)≦I−1(0)<0. From (2.11) and Lemma 2.5, we have
−dAdt=−12πnI0(t)≦2πI−1(t)≦2πI−1(0). |
We integrate this from 0 to t∈(0,T). Using Lemma 2.3, we obtain
4πA(0)−L(0)2=4πA(0)−L(t)2≦4π(A(0)−A(t))≦8πI−1(0)t. |
Consequently, t must satisfy
t≦L(0)2−4πA(0)−8π2I−1(0). |
In the case of (JP), g=L2I−12A. It follows from (2.10), Proposition 2.1, and Lemma 2.5 that
dL2dt=−2I0(t)+2πnL(t)2A(t)I−1(t)≦−2I0(t)≦8π2nI−1(t)≦8π2nI−1(0). |
We integrate this from 0 to t∈(0,T). Using Lemma 2.3, we obtain
−L(0)2≦L(t)2−L(0)2≦8π2nI−1(0)t. |
Consequently t must satisfy
t≦L(0)2−8π2nI−1(0). |
Corollary 3.1. Let f be a classical solution of one of (AP), (LP), or (JP) on [0,T) and let T be the maximum existence time. Assume that the initial curve is smooth, and that satisfies A(0)>0, and I−1(0)=0, but it is not an n-fold circle. Then, T<∞.
Proof. Assume T=∞. Then, Theorem 3.1 implies that I−1(t)≧0 for all t∈[0,∞). On the other hand, (2.12) with I−1(0)=0 shows that I−1(t)≦0. Hence, I−1(t)≡0. When t>0,
∫L0˜κ2ds=I0L=−12Lddt(L2I−1)=0. |
Combining this with the rotation number n, we find that Imf(t) is an n-fold circle. However, this does not satisfy the initial condition.
Corollary 3.2. f is a classical stationary solution of one of (AP), (LP), or (JP), if and only of it is an n-fold circle.
Proof. Assume that Imf is an n-fold circle. Then, ˜κ≡0. Since f=ˆf(0)φ0+ˆf(n)φn, we see I0=I−1=0 by Lemmas 2.2 and 2.4. Hence, ˜κ−gL≡0 for each case. Consequently, it is a stationary solution.
Conversely, assume that f is a stationary solution. It follows from (2.12) that I0(t)≡0. Hence, we can conclude that Imf(t) is an n-fold circle in a manner similar to the proof of the previous corollary.
Suppose now f blows up as t↗T<∞. Then, we have
lim sup |
Indeed, if { \limsup\limits_{ t \nearrow T } I_0 (t) < \infty } , then { \sup\limits_{ t \in (0, T) } I_0 (t) } is bounded. We can show the boundedness of { \sup\limits_{ t \in (0, T) } I_\ell (t) } by the standard energy method. Using this and the equation of the flow, we can see that {\boldsymbol{f}} (t) converges to a smooth function as t \nearrow T . Consequently, the solution can be expanded beyond T . This is a contradiction.
Set
W = \int_0^L \kappa^2 ds . |
We will show the blow-up of W and its blow-up rate. Firstly, we consider the limit supremum of W .
Lemma 3.1. It holds that { \limsup\limits_{ t \nearrow T } W(t) = \infty } .
Proof. Set
R = \int_0^L \kappa \, ds , |
and we have
LW = L \int_0^L \left\{ \tilde \kappa^2 + \left( \frac RL \right)^2 \right\} ds = I_0 + R^2 . |
Hence,
\limsup\limits_{ t \nearrow T } L(t) W (t) = \infty . |
Therefore, the assertion immediately follows in the case of (LP).
In the case of (AP), L is non-increasing by Proposition 2.1. Lemma 2.3 implies that L \geqq \sqrt{ 4 \pi A } = \sqrt{ 4 \pi A_0 } . Consequently, L(t) converges to a positive constant as t \nearrow T , and the assertion follows.
We show that L(t) converges to a positive constant in the case of (JP) as well. We assume that { \liminf\limits_{ t \nearrow T } A (t) = 0 } . I_{-1} is monotone by Proposition 2.1. Therefore, it follows from
\frac { dA } { dt } = \frac { L^2 } { 2A } I_{-1} |
that A does not oscillate near t = T . Hence, we may assume { \lim\limits_{ t \nearrow T } A (t) = 0 } . From the above relation and Proposition 2.1, we find that { \frac { dA } { dt } } is bounded. Consequently, the estimate
0 \lt A(t) \leqq C ( T - t ) |
holds. Thus, we have
0 \leqq \frac { A(t)^2 } { T - t } \leqq \frac { C ( T - t )^2 } { T - t } \to 0 \mbox{ as } t \nearrow T , |
and therefore,
\lim\limits_{ t \nearrow T } \frac { A(T-0)^2 - A(t)^2 } { T - t } = 0 . |
This implies that the left derivative of A^2 at T vanishes:
\begin{equation} \frac { d A^2 } { dt } ( T - 0 ) = 0 . \end{equation} | (3.1) |
However, A(0)^2 > 0 and A(T - 0)^2 = 0 show the existence of t_\ast \in (0, T) such that
\frac { d A^2 } { dt } ( t_\ast ) \lt 0 . |
Since
\frac { d^2 A^2 } { dt^2 } = - 2 I_0 \leqq 0 , |
we have
\frac { d A^2 } { dt } ( t ) \lt \frac { d A^2 } { dt } ( t_\ast ) \lt 0 |
for t \in (t_\ast, T) . This contradicts (3.1). Now, we prove { \liminf\limits_{ t \nearrow T } A(t) > 0 } . Since
\frac { d A } { dt } = \frac { L^2 } { 2A } I_{-1} |
has a constant sign near T , we conclude that { \lim\limits_{ t \nearrow T } A(t) > 0 } . The convergence of { \lim\limits_{ t \nearrow T } L(t) } follows from the convergence of A , and the monotonicity and boundedness of I_{-1} . Since { \frac { L^2 } A } is strictly positive by Proposition 2.1, the limit of L is positive.
Next, we derive the time derivative of W . Set
J_p = L^{ p-1 } \int_0^L \tilde \kappa^p ds \quad ( p \in \mathbb{N} \setminus \{ 1 \} ) , |
which are scale-invariant quantities. Note that I_0 = J_2 .
Lemma 3.2. It holds that
\frac { d W } { dt } = \frac 1 { L^3 } \left\{ - 2 I_1 + J_4 + ( 3R - g ) J_3 + 3R ( R - g ) J_2 -R^3 g \right\} . |
Proof. The proof is a direct calculation:
\begin{align*} \frac { dW } { dt } = & \ \int_0^L \partial_t {\boldsymbol{f}} \cdot \left( 2 \partial_s^2 \kappa + \kappa^3 \right) ds = \int_0^L \left( \tilde \kappa - \frac gL \right) \left( 2 \partial_s^2 \kappa + \kappa^3 \right) ds \\ = & \ - 2 \int_0^L \left( \partial_s \tilde \kappa \right)^2 ds + \int_0^L \left( \tilde \kappa - \frac gL \right) \left( \tilde \kappa + \frac RL \right)^3 ds \\ = & \ - \frac { 2 I_1 } { L^3 } + \int_0^L \left( \tilde \kappa^3 + \frac { 3 R \tilde \kappa^2 } L + \frac { 3 R^2 \tilde \kappa } { L^2 } + \frac { R^3 } { L^3 } \right) \left( \tilde \kappa - \frac gL \right) ds \\ = & \ - \frac { 2 I_1 } { L^3 } + \int_0^L \left\{ \tilde \kappa^4 + \left( \frac { 3R } L - \frac gL \right) \tilde \kappa^3 + \left( \frac { 3 R^2 } { L^2 } - \frac { 3R g } { L^2 } \right) \tilde \kappa^2 - \frac { R^3 g } { L^4 } \right\} ds \\ = & \ \frac 1 { L^3 } \left\{ - 2 I_1 + J_4 + ( 3R - g ) J_3 + 3R ( R - g ) J_2 - R^3 g \right\} . \end{align*} |
Thirdly, we estimate \frac { dW } { dt } from above.
Lemma 3.3. We have
\frac { dW } { dt } \leqq \frac { W^3 } { 2M^2 } . |
Here,
M = \left\{ \begin{array}{ll} { C } & \mathit{\mbox{for (AP) and (LP)}} , \\ { C \left\{ 1 + \left( \frac { L_0^2 } { A_0 } \right)^{ \frac 43 } \right\}^{ - \frac 12 } } \quad & \mathit{\mbox{for (JP)}} \end{array} \right. |
with the constant C being independent of the initial curve and the rotation number.
Proof. Here, we use Lemma 3.2. In the case of (AP), since g = 0 , we have
\frac { dW } { dt } + \frac { 2 I_1 } { L^3 } = \frac 1 { L^3 } \left( J_4 + 3R J_3 + 3 R^2 J_2 \right) . |
Set \theta = \frac 12 - \frac 1p . Then, Gagliardo-Nirenberg's inequality yields
| J_p | \leqq C \left( I_0^{ 1 - \theta } I_1^\theta \right)^{ \frac p2 } = C I_0^{ \frac p4 + \frac 12 } I_1^{ \frac p4 - \frac 12 } . |
Hence,
\begin{align*} \frac { dW } { dt } + \frac { 2 I_1 } { L^3 } \leqq & \ \frac C { L^3 } \left( I_0^{ \frac 32 } I_1^{ \frac 12 } + R I_0^{ \frac 54 } I_1^{ \frac 14 } + R^2 I_0 \right) \\ \leqq & \ \frac { I_1 } { L^3 } + \frac C { L^3 } \left( I_0^3 + R^{ \frac 43 } I_0^{ \frac 53 }+ R^2 I_0 \right) . \end{align*} |
Since 0 \leqq I_0 \leqq LW and R^2 \leqq LW , we obtain
\begin{gather*} I_0^3 \leqq L^3 W^3 , \quad I_0^{ \frac 53 } \leqq L^{ \frac 53 }W^{ \frac 53 } = ( LW )^{ - \frac 43 } L^3 W^3 \leqq R^{ - \frac 83 } L^3 W^3 , \\ I_0 \leqq LW = ( LW )^{ -4 } L^3 W^3 \leqq R^{ -8 } L^3 W^3 . \end{gather*} |
Furthermore,
R = 2 \pi n \geqq 2 \pi . |
Consequently, we conclude that
\frac { dW } { dt } \leqq C \left( 1 + R^{ - \frac 43 } + R^{ -6 } \right) W^3 \leqq C W^3 . |
In the case of (LP), since { g = \frac { I_0 } R } , we have
\begin{align*} \frac { dW } { dt } + \frac 1 { L^3 } \left( 2 I_1 + 3 I_0^2 + R^2 I_0 \right) = & \ \frac 1 { L^3 } \left\{ J_4 + \left( 3R - \frac { I_0 } R \right) J_3 + 3R^2 I_0 \right\} \\ \leqq & \ \frac C { L^3 } \left( I_0^{ \frac 32 } I_1^{ \frac 12 } + R I_0^{ \frac 54 } I_1^{ \frac 14 } + R^{-1} I_0^{ \frac 94 } I_1^{ \frac 14 } + R^2 I_0 \right) \\ \leqq & \ \frac { I_1 } { L^3 } + \frac C { L^3 } \left( I_0^3 + R^{ \frac 43 } I_0^{ \frac 53 } + R^{ - \frac 43 } I_0^3 + R^2 I_0 \right) \\ \leqq & \ \frac { I_1 } { L^3 } + C \left( 1 + R^{ - \frac 43 } + R^{ -6 } \right) W^3 \\ \leqq & \ \frac { I_1 } { L^3 } + C W^3 . \end{align*} |
In the case of (JP), since { g = \frac { L^2 } { 2A } - R } , we have
\begin{align*} & \frac { dW } { dt } + \frac 1 { L^3 } \left( 2 I_1 + \frac { 3R L^2 } { 2A } I_0 + \frac { R^3 L^2 } { 2A } \right) \\ & \quad = \frac 1 { L^3 } \left\{ J_4 + \left( 3R - \frac { L^2 } { 2A } + R \right) J_3 + 6R^2 J_2 + R^4 \right\} \\ & \quad \leqq \frac C { L^3 } \left\{ I_0^{ \frac 32 } I_1^{ \frac 12 } + R I_0^{ \frac 54 } I_1^{ \frac 14 } + \frac { L^2 } A I_0^{ \frac 54 } I_1^{ \frac 14 } + R^2 I_0 + R^{-2} ( LW )^3 \right\} \\ & \quad \leqq \frac { I_1 } { L^3 } + \frac C { L^3 } \left[ I_0^3 + \left\{ R + \left( \frac { L^2 } A \right) \right\}^{ \frac 43 } I_0^{ \frac 53 } + R^2 I_0 + R^{-2} L^3 W^3 \right] \\ & \quad \leqq \frac { I_1 } { L^3 } + C \left[ 1 + \left\{ \frac 1 R + \left( \frac { L^2 } { R^2 A } \right) \right\}^{ \frac 43 } + R^{-6} + R^{-2} \right] W^3 \\ & \quad \leqq \frac { I_1 } { L^3 } + C \left\{ 1 + \left( \frac { L^2 } { A } \right)^{ \frac 43 } \right\} W^3 . \end{align*} |
By Proposition 2.1, we have
\left( \frac { L^2 } A \right)^{ \frac 43 } \leqq \left( \frac { L_0^2 } { A_0 } \right)^{ \frac 43 } . |
Consequently, we can conclude that
\frac { dW } { dt } \leqq C \left\{ 1 + \left( \frac { L_0^2 } { A_0 } \right)^{ \frac 43 } \right\} W^3 . |
Now, we prove the following theorem.
Theorem 3.2. Let T \in (0, T) be the blow-up time for a solution of one of (AP), (LP), or (JP). Then, W(t) blows up as
W (t) \geqq \frac M { \sqrt{ T - t } } , |
where
M = \left\{ \begin{array}{ll} { C } & \mathit{\mbox{for (AP) and (LP)}} , \\ { C \left\{ 1 + \left( \frac { L_0^2 } { A_0 } \right)^{ \frac 43 } \right\}^{ - \frac 12 } } \quad & \mathit{\mbox{for (JP)}} \end{array} \right. |
with a constant C that is independent of the initial curve and the rotation number.
Proof. It follows from Lemma 3.3 that
\frac d { dt } W^{-2} \geqq - M^{-2} . |
Due to Lemma 3.1, there exists a sequence \{ t_n \} such that t_n t \nearrow T and W(t_n)^{-2} \to 0 as n \to \infty . Integrating the differential inequality from t to t_n , we have
W(t)^{ -2 } - W ( t_n )^{ -2 } \leqq M^{-2} ( t_n - t ) . |
Therefore, we obtain the theorem as n \to \infty .
The curve \mathrm{Im} {\boldsymbol{f}} may have several loops. When the orientation of a loop is counter-clockwise as s increases, it is called a positive loop. Otherwise, it is called a negative loop. It has already been shown that L(t) converges to a positive constant as t \to \infty . Therefore, from the above theorem we know that
\lim\limits_{ t \nearrow T } \max\limits_{ s \in \mathbb{R} / L(t) \mathbb{Z} } \kappa ( s , t ) = \infty |
or
\lim\limits_{ t \nearrow T } \min\limits_{ s \in \mathbb{R} / L(t) \mathbb{Z} } \kappa ( s , t ) = - \infty . |
If a positive/negative loop of \mathrm{Im} {\boldsymbol{f}} shrinks as t \nearrow T , the maximum/minimum value of the curvature may not remain bounded. On the other hand, there is a possibility of the maximum or minimum remaining bounded as t \nearrow T . For example, if a negative loop shrinks as t \nearrow T before the positive loops shrink, the minimum value of the curvature goes to - \infty , but the maximum remains bounded. In the last part of this section, we discuss the blow-up of the maximum and minimum.
Theorem 3.3. Let T \in (0, \infty) be the blow-up time for a solution of one of (AP), (LP), or (JP). Assume that
\limsup\limits_{ t \nearrow T } \max\limits_{ s \in \mathbb{R} / L(t) \mathbb{Z} } \kappa ( s , t ) = \infty , |
then it satisfies
\max\limits_{ s \in \mathbb{R} / L(t) \mathbb{Z} } \kappa ( s , t ) \geqq \frac 1 { \sqrt { 2 ( T - t ) } } . |
Proof. Set
\begin{align*} K (t) = & \ \max\limits_{ s \in \mathbb{R} / L(t) \mathbb{Z} } \kappa ( s , t ) , \\ \frac { d^+ K } { dt } (t) = & \ \limsup\limits_{ h \to + 0 } \frac { K( t + h ) - K(t) } h . \end{align*} |
Define the set S_t by S_t = \{ s \in \mathbb{R} / L(t) \mathbb{Z} \, | \, \kappa (s, t) = K(t) \} . After re-parametrizing {\boldsymbol{f}} (\cdot, t) by a new parameter that is independent of t , we apply [2,Lemma B.40]. Consequently, we can conclude that K is a continuous function of t , and that
\frac { d^+ K } { dt } (t) = \max\limits_{ s \in S_t } \partial_t \kappa (s,t) . |
\kappa satisfies the equation
\partial_t \kappa = \partial_s^2 \kappa + \kappa^2 \left( \tilde \kappa - \frac g L \right) = \partial_s^2 \kappa + \kappa^2 \left( \kappa - \frac { R + g } L \right) . |
For the cases of (AP) and (LP), R + g > 0 as R > 0 and g \geqq 0 . In the case of (JP),
R + g = \frac { L^2 } A \geqq 0 . |
\partial_s^2 \kappa \leqq 0 holds for s \in S_t . Hence, we have
\partial_s^2 \kappa + \kappa^2 \left( \kappa - \frac { R + g } L \right) \leqq \kappa^3 = K^3 |
for s \in S_t , and
\frac { d^+ K } { dt } (t) \leqq \max\limits_{ s \in S_t } \partial_t \kappa \leqq K^3 (t) . |
We calculate Dini's derivative of K^{-2} as
\begin{align*} \frac { d^+ } { dt } K^{-2} (t) = & \ \limsup\limits_{ h \to + 0 } \frac { K^{-2} ( t + h ) - K^{-2} (t) } h \\ = & \ \limsup\limits_{ h \to + 0 } \frac { ( K ( t ) + K ( t + h ) )( K ( t ) - K ( t + h ) ) } { K^2 ( t + h ) K^2 (t) h } \\ = & \ - 2 K^{-3} (t) \liminf\limits_{ h \to + 0 } \frac { K( t + h ) - K(t) } h \\ \geqq & \ - 2 K^{-3} (t) \limsup\limits_{ h \to + 0 } \frac { K( t + h ) - K(t) } h \\ = & \ - 2 K^{-3} (t) \frac { d^+ K } { dt } (t) \geqq - 2 . \end{align*} |
According to the assumption of the theorem, there exists a sequence \{ t_k \}_{ k \in \mathbb{N} } such that t_k \nearrow T and K(t_k)^{-2} \to 0 as k \to \infty . Using [4,Theorem 3], we have
K^{-2} ( t_k ) - K^{-2} (t) \geqq \underline{\int\mskip-10mu}_{\, t}^{ \ \ \, t_k } \frac { d^+ } { dt } K^{-2} (t) \, dt \geqq - 2 ( t_k - t ) |
for t_k \in (t, T) . Therefore, we can conclude that
K^{-2} (t) \leqq 2 ( T - t ) |
by k \to \infty
Theorem 3.4. Let T \in (0, \infty) be the blow-up time for a solution of one of (AP), (LP), or (JP). Assume that
\sup\limits_{ t \in [ 0 , T ) } \max\limits_{ s \in \mathbb{R} / L(t) \mathbb{Z} } \kappa ( s , t ) \lt \infty . |
For the solution of (AP),
\min\limits_{ s \in \mathbb{R} / L(t) \mathbb{Z} } \kappa ( s , t ) \leqq - \frac 1 { \sqrt { 4 ( T - t ) } } |
holds.
For the solution of (LP),
\min\limits_{ s \in \mathbb{R} / L(t) \mathbb{Z} } \kappa ( s , t ) \leqq - \left\{ \frac { 2 \pi n } { 9 L(0) ( T - t ) } \right\}^{ \frac 13 } |
holds.
For the solution of (JP), there exists a time T_\ast \in [ 0, T) such that
- \min\limits_{ s \in \mathbb{R} / L(t) \mathbb{Z} } \kappa ( s,t ) \geqq \max\limits_{ s \in \mathbb{R} / L(t) \mathbb{Z} } \kappa ( s,t ) |
holds for t \in [ T_\ast, T) . Additionally, it holds that
\min\limits_{ s \in \mathbb{R} / L(t) \mathbb{Z} } \kappa ( s , t ) \leqq - \frac 1 { \sqrt { 2 C_\ast ( T - t ) } } , |
where
C_\ast = 1 + \frac { L( T_\ast )^2 } { 4 \pi n A ( T_\ast ) } . |
Remark 3.1. The time T_\ast above exists for all cases. And for the proof, it does not need to be the first or last such time.
Proof. Here, we set
\begin{align*} K (t) = & \ - \min\limits_{ s \in \mathbb{R} / L(t) \mathbb{Z} } \kappa ( s , t ) , \\ \frac { d^+ K } { dt } (t) = & \ \limsup\limits_{ h \to + 0 } \frac { K( t + h ) - K(t) } h . \end{align*} |
Define the set S_t by S_t = \{ s \in \mathbb{R} / L(t) \mathbb{Z} \, | \, - \kappa (s, t) = K(t) \} . As shown before, it holds that
\frac { d^+ K } { dt } ( t ) = \max\limits_{ s \in S_t } \partial_t ( - \kappa ) . |
- \kappa satisfies
\partial_t ( - \kappa ) = \partial_s^2 ( - \kappa ) + ( - \kappa )^2 \left\{ ( - \kappa ) + \frac { R + g } L \right\} . |
Since \partial_s^2 (- \kappa) \leqq 0 and - \kappa = K for s \in S_t ,
\partial_t ( - \kappa ) \leqq K^3 + \frac { ( R + g ) K^2 } L . |
If \kappa \leqq C < \infty holds on [ 0, T) , then,
L \max\{ C^2 + K^2 \} \geqq \int_0^L \kappa^2 ds = W \to \infty \mbox{ as } t \nearrow T |
by Theorem 3.2. Since L is bounded, we conclude that K \to \infty as t \nearrow T . Therefore, | \kappa | \leqq \max\{ C, K \} \leqq K near T . Hence, there exists T_\ast \in [ 0, T) as mentioned in the statement. Considering t \geqq T_\ast , we may assume that | \kappa | \leqq K .
In the case of (AP), since g = 0 ,
\frac { ( R + g ) K^2 } L = \frac { R K^2 } L . |
Using this and
R = \int_0^L \kappa \, ds \leqq \int_0^L | \kappa | \, ds \leqq LK , |
we have \partial_t (- \kappa) \leqq 2 K^3 on S_t , i.e.,
\frac { d^+ K } { dt } ( t ) \leqq 2 K^3 . |
Consequently, we obtain the assertion as before.
In the case of (LP),
\frac { K^2 g } L = \frac { K^2 I_0 } { R L } = \frac { K^2 } R \int_0^L \tilde \kappa^2 ds \leqq \frac { K^2 } R \int_0^L \kappa^2 ds \leqq \frac { L K^4 } R . |
The estimate { \frac RL \leqq K } holds for all cases. Hence,
K^3 = \frac LR \cdot \frac RL \cdot K^3 \leqq \frac { L K^4 } R , \quad \frac { K^2 R} L = \left( \frac RL \right)^2 \frac { L K^2 } R \leqq \frac { L K^4 } R . |
Consequently, we have
\frac { d^+ K } { dt } ( t ) \leqq \frac { 3 L K^4 } R = \frac { 3 L(0) K^4 } { 2 \pi n } . |
Here, we use L \equiv L(0) . The statement follows from the above, as shown before.
In the case of (JP), using { R + g = \frac { L^2 } { 2A } } and Lemma 2.1, we have
\frac { K^2 ( R + g ) } L = \frac { K^2 L } { 2 A } = \frac { L^2 } { 2A } \cdot \frac RL \cdot \frac { K^2 } R \leqq \frac { L( T_\ast )^2 } { 2 A( T_\ast ) } \cdot \frac { K^3 } R = \frac { L( T_\ast )^2 K^3 } { 4 \pi n A( T_\ast ) } . |
Hence, it holds that
\frac { d^+ K } { dt } ( t ) \leqq \left( 1 + \frac { L( T_\ast )^2 } { 4 \pi n A( T_\ast ) } \right) K^3 , |
which leads to the required conclusion and ends the proof.
Remark 3.2. At a glance, the power \frac 13 of blow-up rate in (LP) seems to be curious. The difference with other cases is that there is the length L(0) in the braces. If an estimate
\min\limits_{ s \in \mathbb{R} / L(t) \mathbb{Z} } \kappa (s,t) \leqq - \left\{ \frac { 2 \pi n } { 9 L(0) ( T - t ) } \right\}^p |
holds, then the power p must be \frac 13 . To see this, assume that {\boldsymbol{f}} is a solution of (LP) which blows up at T < \infty . For a positive constant \lambda , set
{\boldsymbol{f}}_\lambda ( s , t ) = \lambda^{-1} {\boldsymbol{f}} ( \lambda s , \lambda^2 t ) . |
We denote quantities of {\boldsymbol{f}}_\lambda the notation with the suffix \lambda ; for example \kappa_\lambda is its curvature. Then, {\boldsymbol{f}}_\lambda satisfies (LP) with the length L_\lambda = \lambda^{-1} L (0) , and blows up at T_\lambda = \lambda^{-2} T . The minimum of curvature is
\min\limits_{ s \in \mathbb{R} / L_\lambda (t) \mathbb{Z} } \kappa_\lambda ( s,t ) = \lambda \min\limits_{ \lambda s \in \mathbb{R} / L ( \lambda^2 t )\mathbb{Z} } \kappa ( \lambda s , \lambda^2 t ) \leqq - \lambda \left\{ \frac { 2 \pi n } { 9 L(0) ( T - \lambda^2 t ) } \right\}^p . |
Using L(0) = \lambda L_\lambda (0) and T = \lambda^2 T_\lambda , we have
- \lambda \left\{ \frac { 2 \pi n } { 9 L(0) ( T - \lambda^2 t ) } \right\}^p = - \lambda^{1-3p} \left\{ \frac { 2 \pi n } { 9 L_\lambda (0) ( T_\lambda - t ) } \right\}^p . |
Hence, p must be \frac 13 . The L(0) in braces comes from the estimate \frac { K^2 g } L \leqq \frac { L K^4 } R in the proof. If we can improve this as \frac { K^2 g } L \leqq C K^3 , then the blow-up rate coincides with other cases.
In this section, we assume that {\boldsymbol{f}} is a classical global solution of one of (AP), (LP), or (JP), and that the initial curve satisfies A(0) > 0 . We prove that \mathrm{Im} {\boldsymbol{f}} converges to an n -fold circle exponentially as t \to \infty .
Remark 4.1. However, this conclusion is meaningless if n -fold circles are only global solutions. At least, in the case of (AP), under suitable assumptions on the initial curve, regarding symmetry and convexity, solutions exist globally in time even if n > 1 . See [9].
Firstly we prove the decay of I_{-1} .
Lemma 4.1. For the global solution above, I_{-1} (t) fulfills
0 \leqq I_{-1} (t) \leqq \frac { L(0)^2 I_{-1} (0) }{ L(t)^2 } \exp \left( - \int_0^t \frac { 8 \pi^2 n } { L( \tau )^2 } \, d \tau \right) . |
In particular, the estimate
0 \leqq I_{-1} (t) \leqq \frac { L(0)^2 I_{-1} (0) }{ 4 \pi n A(0) } \exp \left( - \frac { 8 \pi^2 n } { L(0)^2 } t \right) |
is satisfied with respect to the global solution for (AP); the estimate
0 \leqq I_{-1} (t) \leqq I_{-1} (0) \exp \left( - \frac { 8 \pi^2 n } { L(0)^2 } t \right) |
for the global solution of (LP). In the case of (JP), setting { \bar L = \sup\limits_{ t \in [ 0, \infty) } L(t) } , we have \bar L < \infty , and
0 \leqq I_{-1} (t) \leqq \frac { L(0)^2 I_{-1} (0) }{ 4 \pi n A(0) } \exp \left( - \frac { 8 \pi^2 n } { \bar L^2 } t \right) . |
Proof. For global solutions, we know, from Theorem 3.1, that I_{-1} (t) \geqq 0 . Hence, we have
\begin{equation} 4 \pi^2 n I_{-1} (t) \leqq I_0 (t) \end{equation} | (4.1) |
by Lemma 2.5. Consequently, (2.12) becomes
\frac d { dt } \left( L^2 I_{-1} \right) + \frac { 8 \pi^2 n } { L^2 } \left( L^2 I_{-1} \right) \leqq 0 . |
Solving this differential inequality, we obtain the first assertion.
We use \sqrt{ 4 n \pi A(0) } \leqq L(t) \leqq L(0) for (AP), and L(t) \equiv L(0) for (LP). Then, the second assertion follows for these two cases.
Now, we consider the case of (JP). Integrating (2.12), we have
L^2 I_{-1} + 2 \int_0^t I_0 d \tau = L_0^2 I_{-1} (0) . |
{ \frac { L^2 } A } is uniformly positive and bounded by Proposition 2.1. From this, (2.10) with { g = \frac { L^2 I_{-1} } { 2A } } and (4.1), we have
\frac { d L^2 } { dt } + 2 I_0 = \frac { 2 \pi n L^2 } A I_{-1} \leqq \frac { L^2 } { 2 \pi A } I_0 \leqq C I_0 . |
Integrating this, we have
L^2 + 2 \int_0^t I_0 ( \tau ) \, d \tau \leqq L_0^2 + C \int_0^t I_0 ( \tau ) \, d \tau \leqq L_0^2 \left( 1 + C I_{-1} (0) \right) . |
Hence, \bar L < \infty . It follows from (2.11) and { g = \frac { L^2 I_{-1} } { 2A } \geqq 0 } that
\frac { d A^2 } { dt } = L^2 I_{-1} \geqq 0 . |
Therefore, the lower bound L follows from L(t)^4 \geqq (4 \pi n A(t))^2 \geqq (4 \pi n A(0))^2 . Consequently, we obtain the second assertion for (JP).
We denote the relevant statement of Lemma 4.1 as
I_{-1} (t) \leqq C e^{ - \lambda_{-1} t } . |
Corollary 4.1. For the global solution above, there exists L_\infty > 0 and A_\infty > 0 such that
| L - L_\infty | + | A - A_\infty | \leqq C e^{ - \lambda_{-1} t } . |
Proof. In the case of (AP), by Proposition 2.1, we have { \frac { dL } { dt } \leqq 0 } . Hence, we conclude the convergence of { \lim\limits_{ t \to \infty } L(t) } . Set the limit value as L_\infty . Since A(t) \equiv A (0) , and since { \lim\limits_{ t \to \infty } I_{-1} (t) = 0 } , it holds that
L_\infty^2 = \lim\limits_{ t \to \infty } 4 \pi n A(t) = 4 \pi n A(t) = 4 \pi n A(0) \gt 0 |
and L_\infty \leqq L \leqq L(0) . Therefore,
\begin{align*} 0 \leqq & \ L - L_\infty = \frac { L^2 - L_\infty^2 } { L + L_\infty } = \frac { L^2 - 4 \pi n A } { L + L_\infty } = \frac { L^2 I_{-1} } { L + L_\infty } \\ \leqq & \ \frac { L(0)^2 I_{-1} } { 2 L_\infty } = \frac { L(0)^2 I_{-1} } { 4 \sqrt{ \pi n A(0) } } \leqq C e^{ - \lambda_{-1} t } . \end{align*} |
In the case of (LP), since { \frac { dA } { dt } \geqq 0 } and since 4 \pi A \leqq L^2 = L(0)^2 , we conclude the convergence of { \lim\limits_{ t \to \infty } A(t) } . Set the limit value as A_\infty . Since L(t) \equiv L(0) , and { \lim\limits_{ t \to \infty } I_{-1} (t) = 0 } , it holds that 4 \pi n A_\infty = L(0)^2 . Consequently, (2.11) with { g = \frac { I_0 } { 2 \pi n } } yields
0 \leqq A_\infty - A = \int_t^\infty \frac { I_0 } { 2 \pi n } \, dt = \frac { L_0^2 } { 4 \pi n } I_{-1} (t) \\ \leqq C e^{ - \lambda_{-1} t } . |
Here, we use (2.12) and Lemma 4.1.
In the case of (JP), { \frac { dA } { dt } = \frac { L^2 I_{-1} } { 2A } \geqq 0 } . By Proposition 2.1, { \frac A { L^2 } } is uniformly positive and bounded. Combining the above two statements with Lemma 4.1, we conclude
0 \leqq A_\infty - A = \int_t^\infty \frac { L^2 I_{-1} } { 2A } \, dt \leqq C \int_t^\infty I_{-1} dt \leqq C e^{ - \lambda_{-1} t } . |
Furthermore, we estimate that
\begin{align*} | L - L_\infty | = & \ \frac { | L^2 - L_\infty^2 | } { L + L_\infty } = \frac { | L^2 I_{-1} + 4 \pi n A - 4 \pi n A_\infty | } { L + L_\infty } \\ \leqq & \ \frac { L^2 I_{-1} + 4 \pi n | A - A_\infty | } { L_\infty } \leqq C e^{ - \lambda_{-1} t } . \end{align*} |
Corollary 4.2. For the global solution above, it holds that
\int_t^\infty I_0 dt \leqq C e^{ - \lambda_{-1} t } . |
Proof. We know that L is uniformly bounded for all cases. Therefore, (2.12) implies that
\int_t^\infty I_0 \, dt = \frac { L^2 I_{-1} } 2 \leqq C e^{ - \lambda_{-1} t } . |
Lemma 4.2. For the global solution above, there exists \lambda_0 > 0 such that
I_0 \leqq C e^{ - \lambda_0 t } . |
Proof. As in Section 3, we set
W = \int_0^L \kappa^2 ds , \quad R = \int_0^L \kappa \, ds , \quad J_p = L^{p-1} \int_0^L \tilde \kappa^p ds . |
As we know that L \to L_\infty > 0 as t \to \infty , it is enough to show that
L^2 I_0 \leqq C e^{ - \lambda_0 t } . |
Since I_0 = J_2 = LW - R^2 , we have from (2.10) and Lemma 3.2
\begin{align*} \frac d { dt } \left( L^2 I_0 \right) = & \ \frac d { dt } \left( L^3 W - R^2 L^2 \right) = L^3 \frac { dW } { dt } + \left( \frac 32 LW - R^2 \right) \frac { d L^2 } { dt } \\ = & \ - 2 I_1 + J_4 + ( 3R - g ) J_3 + 3R ( R - g ) J_2 - R^3 g \\ & \quad + \, \left( \frac 32 I_0 + \frac 12 R^2 \right) ( - 2 I_0 + 2 Rg ) \\ = & \ - 2 I_1 - 3 I_0^2 + J_4 + ( 3R - g ) J_3 + 2 R^2 J_2 . \end{align*} |
We obtain
\frac d { dt } \left( L^2 I_0 \right) + I_1 + 3 I_0^2 \leqq C \left( I_0^3 + I_0 + I_0^{ \frac 53 } + | g |^{ \frac 43 } I_0^{ \frac 53 } \right) |
in a manner similar to the proof of Lemma 3.3.
Since g = 0 in (AP), and { g = \frac { L^2 I_{-1} } { 2A } } in (JP), | g | is uniformly bounded for these cases. In (LP), g = R^{-1} I_0 . Hence, it holds for every case that
\frac d { dt } \left( L^2 I_0 \right) + I_1 + 3 I_0^2 \leqq C \left( I_0 + I_0^3 \right) . |
This can be presented as
\frac d { dt } \left( L^2 I_0 \right) + I_1 + I_0^2 \left( 3 - C I_0 \right) \leqq C I_0 . |
By Corollary 4.2, there exists t_0 > 0 such that
I_0 (t_0) \leqq \frac 1C , \quad \int_{ t_0 }^\infty I_0 dt \leqq \frac { L^2 } C . |
Set
t_1 = \sup \left\{ t \in [ t_0 , \infty ) \, \left| \, I_0 (t) \lt \frac 3C \quad ( t \in [ t_0 , \infty ) ) \right. \right\} . |
If t_1 < \infty , then,
\limsup\limits_{ t \to t_1 - 0 } I_0 ( t ) = \frac 3C \lt \infty . |
For t \in (t_0, t_1) , we have
\frac d { dt } \left( L^2 I_0 \right) \leqq C I_0 , |
and therefore,
I_0 (t) \leqq I_0 ( t_0 ) + \frac 1 { L^2 } \int_{ t_0 }^t I_0 dt \leqq \frac 2C = \frac 23 \limsup\limits_{ t \to t_1 } I_0 ( t ) . |
Letting t \nearrow t_1 , we obtain a contradiction. Consequently, t_1 = \infty , that is, { I_0 (t) < \frac 3C } for t \in [ t_0, \infty) . Since we know that I_0 is uniformly bounded, we obtain
\frac d { dt } \left( L^2 I_0 \right) + I_1 + 3 I_0^2 \leqq C I_0 . |
It follows from Wirtinger's inequality and the uniform estimate of L^2 that
\frac d { dt } \left( L^2 I_0 \right) + 2 \lambda L^2 I_0 \leqq C I_0 |
for some constant \lambda > 0 . Multiplying both sides by e^{ 2 \lambda t } , and integrating from { \frac t2 } to t , we have
\begin{align*} e^{ 2 \lambda t } L(t)^2 I_0 (t) \leqq & \ C e^{ \lambda t } L \left( \frac t 2 \right)^2 I_0 \left( \frac t2 \right) + C \int_{ \frac t2 }^t e^{ 2 \lambda \tau } I_0 ( \tau ) \, d \tau \\ \leqq & \ C e^{ \lambda t } + C e^{ 2 \lambda t }\int_{ \frac t2 }^\infty I_0 ( \tau ) \, d \tau . \end{align*} |
That is, we have
L(t)^2 I_0 (t) \leqq C e^{ - \lambda t } + C \int_{ \frac t2 }^\infty I_0 ( \tau ) \, d \tau . |
Using the uniform estimate of L and the exponential decay of { \int_{ \frac t2 }^\infty I_0 dt } , we finally obtain the exponential decay of I_0 .
Once we obtain the exponential decay of \widetilde I_{-1} and I_0 , we can obtain the convergence of \mathrm{Im} {\boldsymbol{f}} to an n -fold circle as t \to \infty .
Theorem 4.1. Let {\boldsymbol{f}} be a classical global solution of one of (AP), (LP), or (JP), with the smooth initial curve satisfying A(0) > 0 . Then, \mathrm{Im} {\boldsymbol{f}} converges to an n -fold circle with centre {\boldsymbol{c}}_\infty , and radius { r_\infty = \frac { L_\infty } { 2 \pi n } } in the following sense. Set
\begin{gather*} {\boldsymbol{f}} ( s, t ) = {\boldsymbol{c}} (t) + r(t) \left( \cos \frac { 2 \pi n ( s + \sigma (t) ) } { L(t) } , \sin \frac { 2 \pi n ( s + \sigma (t) ) } { L(t) } \right) + {\boldsymbol{\rho}} ( s , t ) , \\ {\boldsymbol{c}} (t) = \frac 1 { L(t) } \int_0^{ L(t) } {\boldsymbol{f}} ( s,t ) \, ds , \quad r(t) = \frac { L(t) } { 2 \pi n } , \end{gather*} |
with the \mathbb{R} / L(t) \mathbb{Z} -valued function \sigma defined by
\hat f(n) (t) = \sqrt{ L(t) } r(t) \exp \left( \frac { 2 \pi i n \sigma (t) } { L(t) } \right) . |
Then, there exist {\boldsymbol{c}}_\infty \in \mathbb{R}^2 , { r_\infty = \frac { L_\infty } { 2 \pi n } > 0 } , \sigma_\infty \in \mathbb{R} / L_\infty \mathbb{Z} , \lambda > 0 , and C > 0 such that
\| {\boldsymbol{c}} (t) - {\boldsymbol{c}}_\infty \| + | r(t) - r_\infty | + \left| \frac { \sigma (t) } { L(t) } - \frac { \sigma_\infty } { L_\infty } \right| \leqq C e^{ - \lambda t } . |
Furthermore, for k \in \{ 0 \} \cup \mathbb{N} , there exist \gamma_k > 0 and C_k > 0 such that
\| {\boldsymbol{\rho}} ( \cdot , t ) \|_{ C^k ( \mathbb{R} / L(t) \mathbb{Z} ) } \leqq C_k e^{ - \gamma_k t } . |
When n = 1 , we used (1.1) for the proof of this theorem in [7,§ 4], and [8,§ 2.2]. The most crucial part is to show the decay of I_0 . As above, we have already obtained a decay estimate of I_0 without using (1.1) for n \geqq 1 . Once we obtain it, to show the theorem, we can perform the standard energy method with help of usual Gagliardo-Nirenberg's inequality rather than (1.1) as the previous papers. In this sense, (1.1) is not absolutely necessary, however, we need several modification of argument. Using (1.2) which is an alternative inequality to (1.1), we can develop the argument almost word to word as the previous papers. Thus, we deal with (1.2) in the next section.
We discuss (1.2) in this section. Set
\widetilde I_{-1} = \frac { 4 \pi^2 } { L^3 } \sum\limits_{ k \in \mathbb{Z} \setminus \{ 0 \} } ( k - n )^2 | \hat f (k) |^2 . |
Proposition 5.1. We have
\widetilde I_{-1} = \frac 1L \left\| \frac { 2 \pi n } L \left( {\boldsymbol{f}} - \frac 1L \int_0^L {\boldsymbol{f}} \, ds \right) + {\boldsymbol{\nu}} \right\|_{ L^2 }^2 . |
\widetilde I_{-1} vanishes if and only if \mathrm{Im} {\boldsymbol{f}} is an n -fold circle.
Proof. Setting
\tilde f = f - \frac 1L \int_0^L f \, ds , |
we have
\| \tilde f \|_{ L^2 }^2 = \sum\limits_{ k \in \mathbb{Z} \setminus \{ 0 \} } | \hat f ( k ) |^2 . |
The squared L^2 -norm of \nu is
\| \nu \|_{ L^2 }^2 = \| f^\prime \|_{ L^2 }^2 = \sum\limits_{ k \in \mathbb{Z} } \left( \frac { 2 \pi k } L \right)^2 | \hat f (k) |^2 = \frac { 4 \pi^2 } { L^2 } \sum\limits_{ k \in \mathbb{Z} \setminus \{ 0 \} } k^2 | \hat f (k) |^2 . |
On the other hand, we have
\langle \tilde f , \nu \rangle_{ L^2 } = \langle \tilde f , i f^\prime \rangle = - \sum\limits_{ k \in \mathbb{Z} \setminus \{ 0 \} } \frac { 2 \pi k } L | \hat f ( k ) |^2 = - \frac { 4 \pi^2 } { L^2 } \sum\limits_{ k \in \mathbb{Z} \setminus \{ 0 \} } \frac { k L } { 2 \pi } | \hat f (k) |^2 . |
Since the last right-hand side expression is a real number, it holds that
\frac { 4 \pi^2 } { L^2 } \sum\limits_{ k \in \mathbb{Z} \setminus \{ 0 \} } k | \hat f (k) |^2 = - \frac { 2 \pi } L \Re \langle \tilde f , \nu \rangle_{ L^2 } . |
Consequently, we obtain
\begin{align*} \frac { 4 \pi^2 } { L^2 } \sum\limits_{ k \in \mathbb{Z} \setminus \{ 0 \} } ( k - n )^2 | \hat f (k) |^2 = & \ \| \nu \|_{ L^2 }^2 + \frac { 4 n \pi } L \Re \langle \tilde f , f^\prime \rangle_{ L^2 } + \left( \frac { 2 \pi n } L \right)^2 \| \tilde f \|_{ L^2 }^2 \\ = & \ \left\| \frac { 2 \pi n } L \tilde f + \nu \right\|_{ L^2 }^2 \\ = & \ \left\| \frac { 2 \pi n } L \left( {\boldsymbol{f}} - \frac 1L \int_0^L {\boldsymbol{f}} \, ds \right) + {\boldsymbol{\nu}} \right\|_{ L^2 }^2 . \end{align*} |
\widetilde I_{-1} vanishes if and only if
f = \hat f ( 0 ) \varphi_0 + \hat f (n) \varphi_n . |
Hence, \mathrm{Im} {\boldsymbol{f}} is an n -fold circle.
An estimate similar to Lemma 2.5 holds for \widetilde I_{-1} as well.
Lemma 5.1. It holds that 4 \pi^2 \widetilde I_{-1} \leqq I_0 .
Proof. Since k^2 - 1 \geqq 0 for k \in \mathbb{Z} \setminus \{ 0 \} , we have
I_0 - 4 \pi^2 \widetilde I_{-1} = \frac { 16 \pi^4 } { L^3 } \sum\limits_{ k \in \mathbb{Z} \setminus \{ 0 \} } ( k^2 - 1 ) ( k - n )^2 | \hat f (k) |^2 \geqq 0 . |
The next proposition corresponds to [7,Theorem 2.2].
Proposition 5.2. It holds that
I_0 \leqq \widetilde I_{-1}^{ \frac 12 } \left[ \int_0^L L^3 \left\{ \kappa^4 + \left( \kappa^\prime \right)^2 \right\} ds . \right] |
Proof. It follows from Lemma 2.2, Schwarz' inequality, and (2.6) that
\begin{align*} I_0 = & \ \frac { 16 \pi^4 } { L^3} \sum\limits_{ k \in \mathbb{Z} \setminus \{ 0 \} } k^3 ( k - n ) | \hat f (k) |^2 \\ \leqq & \ \frac { 8 \pi^3 } { L^{ \frac 32 } } \left\{ \frac { 4 \pi^2 } { L^3 } \sum\limits_{ k \in \mathbb{Z} \setminus \{ 0 \} }( k - n )^2 | \hat f (k) |^2 \right\}^{ \frac 12 } \left\{ \sum\limits_{ k \in \mathbb{Z} \setminus \{ 0 \} } k^6 | \hat f (k) |^2 \right\}^{ \frac 12 } \\ = & \ \frac { 8 \pi^3 } { L^{ \frac 32 } } \widetilde I_{-1}^{ \frac 12 } \left\{ \sum\limits_{ k \in \mathbb{Z} \setminus \{ 0 \} } k^6 | \hat f (k) |^2 \right\}^{ \frac 12 } \\ = & \ \widetilde I_{-1}^{ \frac 12 } \left[ \int_0^L L^3 \left\{ \kappa^4 + \left( \kappa^\prime \right)^2 \right\} ds \right] . \end{align*} |
Using this proposition, we can prove the following estimates.
Theorem 5.1. Let j \in [ 0, \ell ] be an integer. Then, there exists a positive constant C = C (j, \ell) independent of L such that
I_j \leqq C \left( \widetilde{ I }_{-1}^{ \frac { \ell - j } 2 } I_\ell + \widetilde{ I }_{-1}^{ \frac { \ell - j } { \ell + 1 } } I_\ell^{ \frac { j + 1 } { \ell + 1 } } \right) . |
Proof. Since the assertion can be proven in a manner similar to the proof of [7,Theorem 3.1], we give only the sketch. Firstly, we derive
\begin{equation} I_0 \leqq C \widetilde I_{-1}^{ \frac 12 } \left( I_1 + \widetilde I_1^{ \frac 12 } \right) \end{equation} | (5.1) |
from Proposition 5.2 and Gagliardo-Nirenberg's inequality
\begin{equation} \left( L^{ ( j + 1 ) p - 1 } \int_0^L | \tilde \kappa^{(j)} |^p ds \right)^{ \frac 1p } \leqq C(j,m,p) I_m^{ \frac 1 { 2m } \left( j - \frac 1p + \frac 12 \right) } I_0^{ \frac 12 \left\{ 1 - \frac 1m \left( j - \frac 1p + \frac 12 \right) \right\} } \end{equation} | (5.2) |
for p \geqq 2 and j \leqq m . Here C (j, m, p) is independent of L . It follows from (5.2) that
\begin{equation} I_j \leqq C( j,n ) I_n^{ \frac jm } I_0^{ 1 - \frac jm } . \end{equation} | (5.3) |
Combining this together with (5.1), we obtain the assertion for j = 0 . It gives also the assertion for j \geqq 1 with help of (5.3).
For the proof of convergence of global flow to a circle, we use in [7] the following properties of I_{-1} :
(ⅰ) I_{-1} \geqq 0 ,
(ⅱ) I_{-1} = 0 holds if and if the image of {\boldsymbol{f}} is a circle,
(ⅲ) C^{-1} I_{-1} \leqq I_0 (an inequality of Wirtinger's type).
These are satisfied when n = 1 , but not when n > 1 . The quantity \widetilde I_{-1} satisfies
(ⅰ) \widetilde I_{-1} \geqq 0 ,
(ⅱ) \widetilde I_{-1} = 0 holds if and if the image of {\boldsymbol{f}} is an n -fold circle,
(ⅲ) C^{-1} \widetilde I_{-1} \leqq I_0 (an inequality of Wirtinger's type).
Hence, it is an alternative quantity to I_{-1} .
The first author is partly supported by Grant-in-Aid for Scientific Research (C) (17K05310), and (B) (20H01813), Japan Society for the Promotion Science. The authors express their appreciation to the anonymous referee for his/her suggestive comments and information of related articles [1,10].
The authors declare no conflict of interest.
[1] | B. Andrews, J. McCoy, G. Wheeler, V. M. Wheeler, Closed ideal planar curves, arXiv: 1810.06154. |
[2] | B. Chow, P. Lu, L. Ni, Hamilton's Ricci flow, New York: American Mathematical Society, 2006. |
[3] | M. Gage, On an area-preserving evolution equation for plane curves, In: Nonlinear problems in geometry, Providence: American Mathematical Society, 1986, 51–62. |
[4] |
J. W. Hagood, B. S. Thomson, Recovering a function from a Dini derivative, Am. Math. Mon., 113 (2006), 34–46. doi: 10.1080/00029890.2006.11920276
![]() |
[5] |
L. Jiang, S. Pan, On a non-local curve evolution problem in the plane, Commun. Anal. Geom., 16 (2008), 1–26. doi: 10.4310/CAG.2008.v16.n1.a1
![]() |
[6] |
L. Ma, A. Zhu, On a length preserving curve flow, Monatsh. Math., 165 (2012), 57–78. doi: 10.1007/s00605-011-0302-8
![]() |
[7] | T. Nagasawa, K. Nakamura, Interpolation inequalities between the deviation of curvature and the isoperimetric ratio with applications to geometric flows, Adv. Differential Equ., 24 (2019), 581–608. |
[8] | K. Nakamura, An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow, Discrete Contin. Dyn. S, doi: 10.3934/dcdss.2020385. |
[9] |
X. L. Wang, L. H. Kong, Area-preserving evolution of nonsimple symmetric plane curves, J. Evol. Equ., 14 (2014), 387–401. doi: 10.1007/s00028-014-0219-5
![]() |
[10] | G. Wheeler, Convergence for global curve diffusion flows, arXiv: 2004.08494. |
1. | Xiao-Liu Wang, The evolution of area-preserving and length-preserving inverse curvature flows for immersed locally convex closed plane curves, 2023, 284, 00221236, 109744, 10.1016/j.jfa.2022.109744 | |
2. | Takeyuki Nagasawa, Lower estimate of blow-up time and blow-up rate for non-local curvature flows for plane curves, 2025, 0916-7005, 10.1007/s13160-025-00690-w |