Phanerochaete chrysosporium is considered the model fungus for white rot fungi. It is the first basidiomycete whose genome has been completely sequenced. Its importance lies in the fact that its enzymatic system comprises the major enzymes involved in lignin degradation. Lignin is a complex and highly recalcitrant compound that very few living organisms are capable of degrading naturally. On the other hand, the enzymes produced by P. chrysosporium are also powerful agents for the mineralization into CO2 and H2O of a wide range of aromatic compounds. However, these aromatic compounds are largely xenobiotic compounds with documented toxic effects on the environment and health. While the economic and environmental benefits of biodegradation with P. chrysosporium are well established, a thorough understanding of P. chrysosporium and its biodegradation processes is essential for successful biodegradation. Our aim of this critical literature review is to provide a concise and comprehensive insight of biodecomposition of organic substrate by P. chrysosporium.
Citation: Delon Konan, Adama Ndao, Ekoun Koffi, Saïd Elkoun, Mathieu Robert, Denis Rodrigue, Kokou Adjallé. Biodecomposition with Phanerochaete chrysosporium: A review[J]. AIMS Microbiology, 2024, 10(4): 1068-1101. doi: 10.3934/microbiol.2024046
Phanerochaete chrysosporium is considered the model fungus for white rot fungi. It is the first basidiomycete whose genome has been completely sequenced. Its importance lies in the fact that its enzymatic system comprises the major enzymes involved in lignin degradation. Lignin is a complex and highly recalcitrant compound that very few living organisms are capable of degrading naturally. On the other hand, the enzymes produced by P. chrysosporium are also powerful agents for the mineralization into CO2 and H2O of a wide range of aromatic compounds. However, these aromatic compounds are largely xenobiotic compounds with documented toxic effects on the environment and health. While the economic and environmental benefits of biodegradation with P. chrysosporium are well established, a thorough understanding of P. chrysosporium and its biodegradation processes is essential for successful biodegradation. Our aim of this critical literature review is to provide a concise and comprehensive insight of biodecomposition of organic substrate by P. chrysosporium.
[1] | Mohanty F, Swain SK (2017) Chapter 18-Bionanocomposites for food packaging applications. Nanotechnology Applications in Food.Academic Press 363-379. https://doi.org/10.1016/B978-0-12-811942-6.00018-2 |
[2] | Adane T, Adugna AT, Alemayehu E (2021) Textile industry effluent treatment techniques. J Chem 2021: 5314404. https://doi.org/10.1155/2021/5314404 |
[3] | Kordbacheh F, Heidari G (2023) Water pollutants and approaches for their removal. Mater Chem Horiz 2: 139-153. |
[4] | Anku WW, Mamo MA, Govender PP (2017) Phenolic compounds in water: sources, reactivity, toxicity and treatment methods. Phenolic compounds-natural sources, importance and applications : 419-443. https://doi.org/10.5772/66927 |
[5] | Pointing S (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57: 20-33. https://doi.org/10.1007/s002530100745 |
[6] | Bumpus JA (2021) White rot fungi and their potential use in soil bioremediation processes. Soil Biochem : 65-100. https://doi.org/10.1201/9781003208884-2 |
[7] | Phanthong P, Reubroycharoen P, Hao X, et al. (2018) Nanocellulose: Extraction and application. Carbon Resour Convers 1: 32-43. https://doi.org/10.1016/j.crcon.2018.05.004 |
[8] | Zoghlami A, Paës G (2019) Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis. Front Chem 7: 874. https://doi.org/10.3389/fchem.2019.00874 |
[9] | O'Neill MA, Moon RJ, York WS, et al. Glycans in bioenergy and materials science (2022). |
[10] | He MQ, Zhao RL, Liu DM, et al. (2022) Species diversity of Basidiomycota. Fungal Diversity 114: 281-325. https://doi.org/10.1007/s13225-021-00497-3 |
[11] | Naranjo-Ortiz MA, Gabaldón T (2019) Fungal evolution: diversity, taxonomy and phylogeny of the Fungi. Biol Rev 94: 2101-2137. https://doi.org/10.1111/brv.12550 |
[12] | Yuan Y, Bian LS, Wu YD, et al. (2023) Species diversity of pathogenic wood-rotting fungi (Agaricomycetes, Basidiomycota) in China. Mycology 14: 204-226. https://doi.org/10.1080/21501203.2023.2238779 |
[13] | Hibbett DS, Bauer R, Binder M, et al. (2014) 14 Agaricomycetes. Systematics and Evolution: Part A. Berlin, Heidelberg: Springer Berlin Heidelberg 373-429. https://doi.org/10.1007/978-3-642-55318-9_14 |
[14] | Cao B, Haelewaters D, Schoutteten N, et al. (2021) Delimiting species in Basidiomycota: a review. Fungal Diversity 109: 181-237. https://doi.org/10.1007/s13225-021-00479-5 |
[15] | Miettinen O, Spirin V, Vlasák J, et al. (2016) Polypores and genus concepts in Phanerochaetaceae (Polyporales, Basidiomycota). MycoKeys 17: 1-46. https://doi.org/10.3897/mycokeys.17.10153 |
[16] | Corredor D, Duchicela J, Flores FJ, et al. (2024) Review of explosive contamination and bioremediation: insights from microbial and bio-omic approaches. Toxics 12: 249. https://doi.org/10.3390/toxics12040249 |
[17] | Mori T, Sugimoto S, Ishii S, et al. (2024) Biotransformation and detoxification of tetrabromobisphenol A by white-rot fungus Phanerochaete sordida YK-624. J Hazard Mater 465: 133469. https://doi.org/10.1016/j.jhazmat.2024.133469 |
[18] | Reddy CA, D'Souza TM (1994) Physiology and molecular biology of the lignin peroxidases of Phanerochaete chrysosporium. FEMS Microbiol Rev 13: 137-152. https://doi.org/10.1111/j.1574-6976.1994.tb00040.x |
[19] | Kato H, Takahashi Y, Suzuki H, et al. (2024) Identification and characterization of methoxy- and dimethoxyhydroquinone 1,2-dioxygenase from Phanerochaete chrysosporium. Appl Environ Microbiol 90: e01753-01723. https://doi.org/10.1128/aem.01753-23 |
[20] | Martinez D, Larrondo LF, Putnam N, et al. (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22: 695-700. https://doi.org/10.1038/nbt967 |
[21] | Kuppuraj SP, Venkidasamy B, Selvaraj D, et al. (2021) Comprehensive in silico and gene expression profiles of MnP family genes in Phanerochaete chrysosporium towards lignin biodegradation. Int Biodeterior Biodegrad 157: 105143. https://doi.org/10.1016/j.ibiod.2020.105143 |
[22] | Gold MH, Alic M (1993) Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev 57: 605-622. https://doi.org/10.1128/mr.57.3.605-622.1993 |
[23] | Coconi-Linares N, Ortiz-Vázquez E, Fernández F, et al. (2015) Recombinant expression of four oxidoreductases in Phanerochaete chrysosporium improves degradation of phenolic and non-phenolic substrates. J Biotechnol 209: 76-84. https://doi.org/10.1016/j.jbiotec.2015.06.401 |
[24] | Srinivasan C, Dsouza T, Boominathan K, et al. (1995) Demonstration of laccase in the white rot basidiomycete Phanerochaete chrysosporium BKM-F1767. Appl Environ Microbiol 61: 4274-4277. https://doi.org/10.1128/aem.61.12.4274-4277.1995 |
[25] | Singh J, Das A, Yogalakshmi KN (2020) Enhanced laccase expression and azo dye decolourization during co-interaction of Trametes versicolor and Phanerochaete chrysosporium. SN Appl Sci 2. https://doi.org/10.1007/s42452-020-2832-y |
[26] | Rodríguez CS, Santoro R, Cameselle C, et al. (1997) Laccase production in semi-solid cultures of Phanerochaete chrysosporium. Biotechnol Lett 19: 995-998. https://doi.org/10.1023/A:1018495216946 |
[27] | Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140: 19-26. https://doi.org/10.1099/13500872-140-1-19 |
[28] | Gnanamani A, Jayaprakashvel M, Arulmani M, et al. (2006) Effect of inducers and culturing processes on laccase synthesis in Phanerochaete chrysosporium NCIM 1197 and the constitutive expression of laccase isozymes. Enzyme Microb Technol 38: 1017-1021. https://doi.org/10.1016/j.enzmictec.2006.01.004 |
[29] | Dittmer JK, Patel NJ, Dhawale SW, et al. (1997) Production of multiple laccase isoforms by Phanerochaete chrysosporium grown under nutrient sufficiency. FEMS Microbiol Lett 149: 65-70. https://doi.org/10.1111/j.1574-6968.1997.tb10309.x |
[30] | Kunamneni A, Ballesteros A, Plou FJ, et al. (2007) Fungal laccase—a versatile enzyme for biotechnological applications. Communicating current research and educational topics and trends in applied microbiology.Springer: Academic Press 233-245. |
[31] | Coconi Linares N, Fernández F, Loske AM, et al. (2018) Enhanced delignification of lignocellulosic biomass by recombinant fungus Phanerochaete chrysosporium overexpressing laccases and peroxidases. J Mol Microbiol Biotechnol 28: 1-13. https://doi.org/10.1159/000485976 |
[32] | Holzbaur ELF, Tien M (1988) Structure and regulation of a lignin peroxidase gene from Phanerochaete chrysosporium. Biochem Biophy Res Commun 155: 626-633. https://doi.org/10.1016/S0006-291X(88)80541-2 |
[33] | Sarparast M, Dattmore D, Alan J, et al. (2020) Cytochrome P450 metabolism of polyunsaturated fatty acids and neurodegeneration. Nutrients 12: 3523. https://doi.org/10.3390/nu12113523 |
[34] | Matsuzaki F, Wariishi H (2004) Functional diversity of cytochrome P450s of the white-rot fungus Phanerochaete chrysosporium. Biochem Biophys Res Commun 324: 387-393. https://doi.org/10.1016/j.bbrc.2004.09.062 |
[35] | Ning D, Wang H (2012) Involvement of Cytochrome P450 in Pentachlorophenol Transformation in a White Rot Fungus Phanerochaete chrysosporium. PLOS ONE 7: e45887. https://doi.org/10.1371/journal.pone.0045887 |
[36] | Ichinose H, Ukeba S, Kitaoka T (2022) Latent potentials of the white-rot basidiomycete Phanerochaete chrysosporium responsible for sesquiterpene metabolism: CYP5158A1 and CYP5144C8 decorate (E)-α-bisabolene. Enzyme Microb Technol 158: 110037. https://doi.org/10.1016/j.enzmictec.2022.110037 |
[37] | Ning D, Wang H, Zhuang Y (2010) Induction of functional cytochrome P450 and its involvement in degradation of benzoic acid by Phanerochaete chrysosporium. Biodegradation 21: 297-308. https://doi.org/10.1007/s10532-009-9301-z |
[38] | Yadav J, Doddapaneni H, Subramanian V (2006) P450ome of the white rot fungus Phanerochaete chrysosporium: structure, evolution and regulation of expression of genomic P450 clusters. Biochem Soc Trans 34: 1165-1169. https://doi.org/10.1042/BST0341165 |
[39] | Subramanian V, Yadav JS (2008) Regulation and heterologous expression of P450 enzyme system components of the white rot fungus Phanerochaete chrysosporium. Enzyme Microb Technol 43: 205-213. https://doi.org/10.1016/j.enzmictec.2007.09.001 |
[40] | Alic M, Kornegay Janet R, Pribnow D, et al. (1989) Transformation by complementation of an adenine auxotroph of the lignin-degrading basidiomycete phanerochaete chrysosporium. Appl Environ Microbiol 55: 406-411. https://doi.org/10.1128/aem.55.2.406-411.1989 |
[41] | Schick Zapanta L, Hattori T, Rzetskaya M, et al. (1998) Cloning of phanerochaete chrysosporium leu2 by complementation of bacterial auxotrophs and transformation of fungal auxotrophs. Appl Environ Microbiol 64: 2624-2629. https://doi.org/10.1128/AEM.64.7.2624-2629.1998 |
[42] | Sharma KK, Gupta S, Kuhad RC (2006) Agrobacterium mediated delivery of marker genes to Phanerochaete chrysosporium mycelial pellets: a model transformation system for white-rot fungi. Biotechnol Appl Biochem 43: 181-186. https://doi.org/10.1042/BA20050160 |
[43] | Suzuki H, MacDonald J, Syed K, et al. (2012) Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize. BMC Genomics 13: 444. https://doi.org/10.1186/1471-2164-13-444 |
[44] | Lim YW, Baik KS, Chun JS, et al. (2007) Accurate delimitation of Phanerochaete chrysosporium and Phanerochaete sordida by specific PCR primers and cultural approach. J Microbiol Biotechnol 17: 468-473. |
[45] | Vivekanandhan K, Ayyappadas MP, Abirami SKG, et al. (2021) Biodegradation of sago effluent by white- rot fungus Phanerochaete chrysosporium. Int Life Sci Pharma Res 11: 91-99. https://doi.org/10.22376/ijpbs/lpr.2021.11.2.L91-99 |
[46] | Liu L, Qin Y, Li P, et al. (2016) Improvement in continuous cropping of cut chrysanthemum by phanerochaete chrysosporium. Pak J Bot 48: 1453-1457. |
[47] | Dahiya J, Singh D, Nigam P (2001) Decolourisation of synthetic and spentwash melanoidins using the white-rot fungus Phanerochaete chrysosporium JAG-40. Bioresour Technol 78: 95-98. https://doi.org/10.1016/S0960-8524(00)00119-X |
[48] | Zhao J, de Koker TH, Janse BJH (1995) First report of the white rotting fungus Phanerochaete chrysosporium in South Africa. S Afr J Bot 61: 167-168. https://doi.org/10.1016/S0254-6299(15)30503-2 |
[49] | Bin D, Yumei X, Hailong D, et al. (2019) Phanerochaete chrysosporium strain B-22, a parasitic fungus infecting Meloidogyne incognita. bioRxiv : 622472. |
[50] | Yang DQ (2005) Isolation of wood-inhabiting fungi from Canadian hardwood logs. Can J Microbiol 51: 1-6. https://doi.org/10.1139/w04-104 |
[51] | Khalil H, Legin E, Kurek B, et al. (2021) Morphological growth pattern of Phanerochaete chrysosporium cultivated on different Miscanthus x giganteus biomass fractions. BMC Microbiol 21: 318. https://doi.org/10.1186/s12866-021-02350-8 |
[52] | Liu L, Li H, Liu Y, et al. (2020) Whole transcriptome analysis provides insights into the molecular mechanisms of chlamydospore-like cell formation in Phanerochaete chrysosporium. Front Microbiol 11: 527389. https://doi.org/10.3389/fmicb.2020.527389 |
[53] | Bánki O, Roskov Y, Döring M, et al. (2024) Catalogue of Life checklist (Version 2024-03-26). Catalogue of Life . |
[54] | Franco-Duarte R, Černáková L, Kadam S, et al. (2019) Advances in chemical and biological methods to identify microorganisms—from past to present. Microorganisms 7: 130. https://doi.org/10.3390/microorganisms7050130 |
[55] | Calvo-Flores FG, Dobado JA (2010) Lignin as renewable raw material. ChemSusChem 3: 1227-1235. https://doi.org/10.1002/cssc.201000157 |
[56] | Liu Q, Luo L, Zheng L (2018) Lignins: biosynthesis and biological functions in plants. Int J Mol Sci 19: 335. https://doi.org/10.3390/ijms19020335 |
[57] | Konan D, Koffi E, Ndao A, et al. (2022) An overview of extrusion as a pretreatment method of lignocellulosic biomass. Energies 15: 3002. https://doi.org/10.3390/en15093002 |
[58] | Rosa FM, Mota TF, Busso C, et al. (2024) Filamentous fungi as bioremediation agents of industrial effluents: a systematic review. Fermentation 10: 134. https://doi.org/10.3390/fermentation10030143 |
[59] | Lundell TK, Mäkelä MR, de Vries RP, et al. (2014) Chapter eleven-genomics, lifestyles and future prospects of wood-decay and litter-decomposing basidiomycota. Adv Bot Res 70: 329-370. https://doi.org/10.1016/B978-0-12-397940-7.00011-2 |
[60] | Yang C, Qin J, Sun S, et al. (2024) Progress in developing methods for lignin depolymerization and elucidating the associated mechanisms. Eur Polym J 210: 112995. https://doi.org/10.1016/j.eurpolymj.2024.112995 |
[61] | Singh D, Chen S (2008) The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. Appl Microbiol Biotechnol 81: 399-417. https://doi.org/10.1007/s00253-008-1706-9 |
[62] | Larrondo LF, Vicuña R, Cullen D (2005) 14 - Phanerochaete chrysosporium genomics. Applied Mycology and Biotechnology.Elsevier 315-352. https://doi.org/10.1016/S1874-5334(05)80016-4 |
[63] | Glenn JK, Gold MH (2022) Reprint of: purification and characterization of an extracellular mn (ll)-dependent peroxidase from the lignin-degrading basidiomycete, phanerochaete chrysosporium. Arch Biochem Biophys 726: 109251. https://doi.org/10.1016/j.abb.2022.109251 |
[64] | Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30: 454-466. https://doi.org/10.1016/S0141-0229(01)00528-2 |
[65] | Sundaramoorthy M, Youngs HL, Gold MH, et al. (2005) High-resolution crystal structure of manganese peroxidase: substrate and inhibitor complexes. Biochemistry 44: 6463-6470. https://doi.org/10.1021/bi047318e |
[66] | Emami E, Zolfaghari P, Golizadeh M, et al. (2020) Effects of stabilizers on sustainability, activity and decolorization performance of Manganese Peroxidase enzyme produced by Phanerochaete chrysosporium. J Environ Chemi Eng 8: 104459. https://doi.org/10.1016/j.jece.2020.104459 |
[67] | Falade AO, Nwodo UU, Iweriebor BC, et al. (2017) Lignin peroxidase functionalities and prospective applications. MicrobiologyOpen 6: e00394. https://doi.org/10.1002/mbo3.394 |
[68] | Pollegioni L, Tonin F, Rosini E (2015) Lignin-degrading enzymes. FEBS J 282: 1190-1213. https://doi.org/10.1111/febs.13224 |
[69] | Koduri RS, Tien M (1994) Kinetic analysis of lignin peroxidase: explanation for the mediation phenomenon by veratryl alcohol. Biochemistry 33: 4225-4230. https://doi.org/10.1021/bi00180a016 |
[70] | Koduri RS, Tien M (1995) Oxidation of Guaiacol by Lignin Peroxidase: ROLE OF VERATRYL ALCOHOL (*). J Biol Chem 270: 22254-22258. https://doi.org/10.1074/jbc.270.38.22254 |
[71] | Singh S, Cheng G, Sathitsuksanoh N, et al. (2015) Comparison of different biomass pretreatment techniques and their impact on chemistry and structure. Front Energy Res 2: 62. https://doi.org/10.3389/fenrg.2014.00062 |
[72] | Rivera-Hoyos CM, Morales-Álvarez ED, Poutou-Piñales RA, et al. (2013) Fungal laccases. Fungal Biol Revi 27: 67-82. https://doi.org/10.1016/j.fbr.2013.07.001 |
[73] | Gao L, Huang D, Cheng M, et al. (2023) Effect of Phanerochaete chrysosporium inoculation on manganese passivation and microbial community succession during electrical manganese residue composting. Bioresour Technol 370: 128497. https://doi.org/10.1016/j.biortech.2022.128497 |
[74] | Zhang H, Xu X, Tan L, et al. (2021) The aggregation of Aspergillus spores and the impact on their inactivation by chlorine-based disinfectants. Water Res 204: 117629. https://doi.org/10.1016/j.watres.2021.117629 |
[75] | Li N, Yu J, Wang X, et al. (2024) Growth, oxidative stress and ability to degrade tetrabromobisphenol a of Phanerochaete chrysosporium in the presence of different nano iron oxides. Water 16: 567. https://doi.org/10.3390/w16040567 |
[76] | Chen Z, Li N, Lan Q, et al. (2021) Laccase inducer Mn2+ inhibited the intracellular degradation of norfloxacin by Phanerochaete chrysosporium. Int Biodeterior Biodegrad 164: 105300. https://doi.org/10.1016/j.ibiod.2021.105300 |
[77] | Mitchell DA, de Lima Luz LF, Krieger N, et al. (2011) Bioreactors for solid-state fermentation. Compr Biotechnol 347–360. https://doi.org/10.1016/B978-0-08-088504-9.00107-0 |
[78] | Machado de Castro A, Fragoso dos Santos A, Kachrimanidou V, et al. (2018) Chapter 10-Solid-state fermentation for the production of proteases and amylases and their application in nutrient medium production. Current Developments in Biotechnology and Bioengineering.Elsevier 185-210. https://doi.org/10.1016/B978-0-444-63990-5.00010-4 |
[79] | Durand A (2003) Bioreactor designs for solid state fermentation. Biochem Eng J 13: 113-125. https://doi.org/10.1016/S1369-703X(02)00124-9 |
[80] | Krishania M, Sindhu R, Binod P, et al. (2018) Design of Bioreactors in Solid-State Fermentation. Current Developments in Biotechnology and Bioengineering.Elsevier 83-96. https://doi.org/10.1016/B978-0-444-63990-5.00005-0 |
[81] | Wang L, Yang ST (2007) Chapter 18-Solid state fermentation and its applications. Bioprocessing for Value-Added Products from Renewable Resources. Amsterdam: Elsevier 465-489. https://doi.org/10.1016/B978-044452114-9/50019-0 |
[82] | Arora S, Rani R, Ghosh S (2018) Bioreactors in solid state fermentation technology: Design, applications and engineering aspects. J Biotechnol 269: 16-34. https://doi.org/10.1016/j.jbiotec.2018.01.010 |
[83] | Webb C (2017) Design aspects of solid state fermentation as applied to microbial bioprocessing. J Appl Biotechnol Bioeng 4: 1-25. https://doi.org/10.15406/jabb.2017.04.00094 |
[84] | Robinson T, Nigam P (2003) Bioreactor design for protein enrichment of agricultural residues by solid state fermentation. Biochem Eng J 13: 197-203. https://doi.org/10.1016/S1369-703X(02)00132-8 |
[85] | Nava I, Favela-Torres E, Saucedo-Castaneda G (2011) Effect of mixing on the solid-state fermentation of coffee pulp with Aspergillus tamarii. Food Technol Biotechnol 49: 391-395. |
[86] | Ge X, Vasco-Correa J, Li Y (2017) 13-Solid-state fermentation bioreactors and fundamentals. Current Developments in Biotechnology and Bioengineering.Elsevier 381-402. https://doi.org/10.1016/B978-0-444-63663-8.00013-6 |
[87] | Lonsane BK, Ghildyal NP, Budiatman S, et al. (1985) Engineering aspects of solid state fermentation. Enzyme Microb Technol 7: 258-265. https://doi.org/10.1016/0141-0229(85)90083-3 |
[88] | Werther J (2007) Fluidized-Bed Reactors. Ullmann's Encyclopedia Indust Chem . https://doi.org/10.1002/14356007.b04_239.pub2 |
[89] | Fernández VM (2011) Water activity. Encyclopedia of Astrobiology. Berlin, Heidelberg: Springer Berlin Heidelberg 1763-1764. https://doi.org/10.1007/978-3-642-11274-4_1678 |
[90] | Allen LV (2018) Quality control: water activity considerations for beyond-use dates. Int J Pharm Compd 22: 288-293. |
[91] | do Nascimento FV, de Castro AM, Secchi AR, et al. (2021) Insights into media supplementation in solid-state fermentation of soybean hulls by Yarrowia lipolytica: Impact on lipase production in tray and insulated packed-bed bioreactors. Biochem Eng J 166: 107866. https://doi.org/10.1016/j.bej.2020.107866 |
[92] | Teixeira MCV, Alves EH, de Oliveira FP, et al. (2019) Automation of solid state fermentation reactor for enzymes synthesis. Revista Univap 25: 1-12. https://doi.org/10.18066/revistaunivap.v25i49.2015 |
[93] | Sala A, Barrena R, Artola A, et al. (2019) Current developments in the production of fungal biological control agents by solid-state fermentation using organic solid waste. Crit Rev Environ Sci Technol 49: 655-694. https://doi.org/10.1080/10643389.2018.1557497 |
[94] | Suryadi H, Judono JJ, Putri MR, et al. (2022) Biodelignification of lignocellulose using ligninolytic enzymes from white-rot fungi. Heliyon 8: e08865. https://doi.org/10.1016/j.heliyon.2022.e08865 |
[95] | Manpreet S, Sawraj S, Sachin D, et al. (2005) Influence of process parameters on the production of metabolites in solid-state fermentation. Malay J Microbiol 2: 1-9. https://doi.org/10.21161/mjm.120501 |
[96] | Rosenberg E, Zilber-Rosenberg I (2016) Do microbiotas warm their hosts?. Gut Microbes 7: 283-285. https://doi.org/10.1080/19490976.2016.1182294 |
[97] | Wu ZD, Zhang Q, Yin J, et al. (2020) Interactions of mutiple biological fields in stored grain ecosystems. Sci Rep 10: 9302. https://doi.org/10.1038/s41598-020-66130-6 |
[98] | Liu C, Chen G, Zhou Y, et al. (2022) Investigation on compression and mildew of mixed and separated maize. Food Sci Nutr 11: 2118-2129. https://doi.org/10.1002/fsn3.2985 |
[99] | de Reu JC, Zwietering MH, Rombouts FM, et al. (1993) Temperature control in solid substrate fermentation through discontinuous rotation. Appl Microbiol Biotechnol 40: 261-265. https://doi.org/10.1007/BF00170377 |
[100] | Azad K, Halim MA, Hossain F (2013) Optimization of culture conditions for the production of xylanase by two thermophilic fungi under solid state fermentation. J Asiat Soc Bangladesh Sci 39: 43-51. https://doi.org/10.3329/jasbs.v39i1.16032 |
[101] | Bhati P (2019) Effect of temperatures on the growth of floral waste degrading fungi. Fungal Territory 2: 12-15. https://doi.org/10.36547/ft.2019.2.2.12-15 |
[102] | Ouahiba G, Yasmina S, Azzeddine B, et al. (2021) Optimization of endoglucanase production from Sarocladium kiliense strain BbV1 under solid state fermentation, using response surface methodology. PONTE Int Sci Res 77. https://doi.org/10.21506/j.ponte.2021.4.3 |
[103] | Villegas E, Aubague S, Alcantara L, et al. (1993) Solid state fermentation: Acid protease production in controlled CO2 and O2 environments. Biotechnol Adv 11: 387-397. https://doi.org/10.1016/0734-9750(93)90008-B |
[104] | Cruz-Cordova T, Roldán-Carrillo T, Dıaz-Cervantes D, et al. (1999) CO2 evolution and ligninolytic and proteolytic activities of Phanerochaete chrysosporium grown in solid state fermentation. Res Conserv Recycl 27: 3-7. https://doi.org/10.1016/S0921-3449(98)00080-9 |
[105] | Try S Production d'arômes par fermentation en milieu solide: Université Bourgogne Franche-Comté (2018). |
[106] | Montoya S, Patiño A, Sánchez ÓJ (2021) Production of lignocellulolytic enzymes and biomass of trametes versicolor from agro-industrial residues in a novel fixed-bed bioreactor with natural convection and forced aeration at pilot scale. Processes 9: 397. https://doi.org/10.3390/pr9020397 |
[107] | Kwanga SN, Djuffo DT, Boum AT, et al. (2022) Effect of solid-state fermentation on the essential oil yield of curcuma longa residues. Waste Biomass Valorization 3: 4565-4573. https://doi.org/10.1007/s12649-022-01817-7 |
[108] | Mardawati E, Sinurat Y, Yuliana T, et al. (2020) Production of crude xylanase from Trichoderma sp. using reutealis trisperma exocarp substrate in solid state fermentation. IOP Conf Ser Earth Environ Sci 515: 012024. https://doi.org/10.1088/1755-1315/515/1/012024 |
[109] | Naeimi S, Khosravi V, Varga A, et al. (2020) Screening of organic substrates for solid-state fermentation, viability and bioefficacy of Trichoderma harzianum AS12-2, a biocontrol strain against rice sheath blight disease. Agronomy 10: 1258. https://doi.org/10.3390/agronomy10091258 |
[110] | Tai WY, Tan JS, Lim V, et al. (2019) Comprehensive studies on optimization of cellulase and xylanase production by a local indigenous fungus strain via solid state fermentation using oil palm frond as substrate. Biotechnol Prog 35: e2781. https://doi.org/10.1002/btpr.2781 |
[111] | Wu C, Zhang F, Li L, et al. (2018) Novel optimization strategy for tannase production through a modified solid-state fermentation system. Biotechnol Biof 11: 92. https://doi.org/10.1186/s13068-018-1093-0 |
[112] | Liu Q, Bai Jf, Gu WH, et al. (2020) Leaching of copper from waste printed circuit boards using Phanerochaete chrysosporium fungi. Hydrometallurgy 196: 105427. https://doi.org/10.1016/j.hydromet.2020.105427 |
[113] | Guo X, Peng Z, Huang D, et al. (2018) Biotransformation of cadmium-sulfamethazine combined pollutant in aqueous environments: Phanerochaete chrysosporium bring cautious optimism. Chem Eng J 347: 74-83. https://doi.org/10.1016/j.cej.2018.04.089 |
[114] | Mohammadi A, Nasernejad B (2009) Enzymatic degradation of anthracene by the white rot fungus Phanerochaete chrysosporium immobilized on sugarcane bagasse. J Hazard Mater 161: 534-537. https://doi.org/10.1016/j.jhazmat.2008.03.132 |
[115] | de Almeida AP, Macrae A, Ribeiro BD, et al. (2021) Decolorization and detoxification of different azo dyes by Phanerochaete chrysosporium ME-446 under submerged fermentation. Br J Microbiol 52: 727-738. https://doi.org/10.1007/s42770-021-00458-7 |
[116] | Aiken BS, Logan BE (1996) Degradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium grown in ammonium lignosulphonate media. Biodegradation 7: 175-182. https://doi.org/10.1007/BF00058177 |
[117] | Díaz AI, Ibañez M, Laca A, et al. (2021) Biodegradation of olive mill effluent by white-rot fungi. Appl Sci 11: 9930. https://doi.org/10.3390/app11219930 |
[118] | Díaz AI, Laca A, Lima N, et al. (2022) Treatment of kraft black liquor using basidiomycete and ascomycete fungi. Process Saf Environ Prot 168: 67-76. https://doi.org/10.1016/j.psep.2022.09.065 |
[119] | Ibbini J, Al-Kofahi S, Davis LC, et al. (2024) Investigating the potential of Fusarium solani and Phanerochaete chrysosporium in the removal of 2,4,6-TNT. Appl Biochem Biotechnol 196: 2713-2727. https://doi.org/10.1007/s12010-023-04735-z |
[120] | Wu F, Guo Z, Cui K, et al. (2023) Insights into characteristics of white rot fungus during environmental plastics adhesion and degradation mechanism of plastics. J Hazard Mater 448: 130878. https://doi.org/10.1016/j.jhazmat.2023.130878 |
[121] | Ghasemi F, Tabandeh F, Bambai B, et al. (2010) Decolorization of different azo dyes by Phanerochaete chrysosporium RP78 under optimal condition. Int J Environ Sci Technol 7: 457-464. https://doi.org/10.1007/BF03326155 |
[122] | Mujtaba M, Fernandes Fraceto L, Fazeli M, et al. (2023) Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. J Cleaner Prod 402: 136815. https://doi.org/10.1016/j.jclepro.2023.136815 |
[123] | Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass--An overview. Bioresour Technol 199: 76-82. https://doi.org/10.1016/j.biortech.2015.08.030 |
[124] | Gupta A, Preetam A, Ghosh P, et al. (2023) A novel combinatorial approach for cleaner production of biodegradable sheets from the combination of paddy straw and pine needle waste. J Cleaner Prod 421: 138440. https://doi.org/10.1016/j.jclepro.2023.138440 |
[125] | Gupta A, Tiwari A, Ghosh P, et al. (2023) Enhanced lignin degradation of paddy straw and pine needle biomass by combinatorial approach of chemical treatment and fungal enzymes for pulp making. Bioresour Technol 368: 128314. https://doi.org/10.1016/j.biortech.2022.128314 |
[126] | Konan D, Rodrigue D, Koffi E, et al. (2024) Combination of technologies for biomass pretreatment: a focus on extrusion. Waste Biomass Valorization 15: 4519-4540. https://doi.org/10.1007/s12649-024-02472-w |
[127] | Chen J, Zhou J, Yuan R, et al. (2024) Mild pretreatment combined with fed-batch strategy to improve the enzymatic efficiency of apple pomace at high-solids content. BioEnergy Res 17: 1674-1688. https://doi.org/10.1007/s12155-024-10719-6 |
[128] | Reddy KT, Kocher GS, Singh A (2024) Pretreatment and saccharification of corn cobs using partially purified fungal ligninozymes. Biofuels Bioprod Bioref 18: 1631-1638. https://doi.org/10.1002/bbb.2661 |
[129] | Phuong D, Nguyen L (2023) Coffee pulp pretreatment methods: A comparative analysis of hydrolysis efficiency. Foods Raw Mater 12: 133-141. https://doi.org/10.21603/2308-4057-2024-1-594 |
[130] | Dao CN, Tabil LG, Mupondwa E, et al. (2023) Microbial pretreatment of camelina straw and switchgrass by Trametes versicolor and Phanerochaete chrysosporium to improve physical quality and enhance enzymatic digestibility of solid biofuel pellets. Renewable Energy 217: 119147. https://doi.org/10.1016/j.renene.2023.119147 |
[131] | Shrivastava A, Sharma RK (2023) Conversion of lignocellulosic biomass: Production of bioethanol and bioelectricity using wheat straw hydrolysate in electrochemical bioreactor. Heliyon 9: e12951. https://doi.org/10.1016/j.heliyon.2023.e12951 |
[132] | Benaddou M, Hajjaj H, Diouri M (2023) Fungal treatment and wheat straw blend for enhanced animal feed from olive pulp. J Ecolog Eng 24: 187-200. https://doi.org/10.12911/22998993/172423 |
[133] | Shi J, Sharma-Shivappa RR, Chinn MS (2009) Microbial pretreatment of cotton stalks by submerged cultivation of Phanerochaete chrysosporium. Bioresour Technol 100: 4388-4395. https://doi.org/10.1016/j.biortech.2008.10.060 |
[134] | Onu Olughu O, Tabil LG, Dumonceaux T, et al. (2022) Optimization of solid-state fermentation of switchgrass using white-rot fungi for biofuel production. Fuels 3: 730-752. https://doi.org/10.3390/fuels3040043 |
[135] | Kalra A, Gupta A (2021) Recent advances in decolourization of dyes using iron nanoparticles: A mini review. Mater Today Proc 36: 689-696. https://doi.org/10.1016/j.matpr.2020.04.677 |
[136] | McMullan G, Meehan C, Conneely A, et al. (2001) Microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotechnol 56: 81-87. https://doi.org/10.1007/s002530000587 |
[137] | Ganaie RJ, Rafiq S, Sharma A (2023) Recent advances in physico-chemical methods for removal of dye from wastewater. IOP Conf Ser Earth Environ Sci 1110: 012040. https://doi.org/10.1088/1755-1315/1110/1/012040 |
[138] | Senthilkumar S, Perumalsamy M, Janardhana Prabhu H (2014) Decolourization potential of white-rot fungus Phanerochaete chrysosporium on synthetic dye bath effluent containing Amido black 10B. J Saudi Chem Soc 18: 845-853. https://doi.org/10.1016/j.jscs.2011.10.010 |
[139] | Radha KV, Regupathi I, Arunagiri A, et al. (2005) Decolorization studies of synthetic dyes using Phanerochaete chrysosporium and their kinetics. Process Biochem 40: 3337-3345. https://doi.org/10.1016/j.procbio.2005.03.033 |
[140] | Gugel I, Summa D, Costa S, et al. (2024) Mycoremediation of synthetic azo dyes by white-rot fungi grown on diary waste: a step toward sustainable and circular bioeconomy. Fermentation 10: 80. https://doi.org/10.3390/fermentation10020080 |
[141] | Li Q, Wang J, Wang Z, et al. (2023) Surfactants double the biodegradation rate of persistent polycyclic aromatic hydrocarbons (PAHs) by a white-rot fungus Phanerochaete sordida. Environ Earth Sci 82: 285. https://doi.org/10.1007/s12665-023-10970-8 |
[142] | Fulekar MH, Pathak B, Fulekar J, et al. (2013) Bioremediation of organic pollutants using Phanerochaete chrysosporium. Fungi as Bioremediators. Berlin, Heidelberg: Springer Berlin Heidelberg 135-157. https://doi.org/10.1007/978-3-642-33811-3_6 |
[143] | Bumpus JA (1989) Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 55: 154-158. https://doi.org/10.1128/aem.55.1.154-158.1989 |
[144] | Lee AH, Lee H, Heo YM, et al. (2020) A proposed stepwise screening framework for the selection of polycyclic aromatic hydrocarbon (PAH)-degrading white rot fungi. Bioprocess Biosys Eng 43: 767-783. https://doi.org/10.1007/s00449-019-02272-w |
[145] | Venkatraman G, Giribabu N, Mohan PS, et al. (2024) Environmental impact and human health effects of polycyclic aromatic hydrocarbons and remedial strategies: A detailed review. Chemosphere 351: 141227. https://doi.org/10.1016/j.chemosphere.2024.141227 |
[146] | Abo-State MAM, Osman ME, Khattab OH, et al. (2021) Degradative pathways of polycyclic aromatic hydrocarbons (PAHs) by Phanerochaete chrysosporium under optimum conditions. J Radi Res Appl Sci 14: 507-520. https://doi.org/10.1080/16878507.2021.2001247 |
[147] | Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem 261: 16948-16952. https://doi.org/10.1016/S0021-9258(19)75982-1 |
[148] | Bogan BW, Lamar RT (1995) One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 61: 2631-2635. https://doi.org/10.1128/aem.61.7.2631-2635.1995 |
[149] | Wang C, Sun H, Li J, et al. (2009) Enzyme activities during degradation of polycyclic aromatic hydrocarbons by white rot fungus Phanerochaete chrysosporium in soils. Chemosphere 77: 733-738. https://doi.org/10.1016/j.chemosphere.2009.08.028 |
[150] | Zheng Z, Obbard JP (2002) Oxidation of polycyclic aromatic hydrocarbons (PAH) by the white rot fungus, Phanerochaete chrysosporium. Enzyme Microb Technol 31: 3-9. https://doi.org/10.1016/S0141-0229(02)00091-1 |
[151] | Ding J, Chen B, Zhu L (2013) Biosorption and biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium in aqueous solution. Chin Sci Bull 58: 613-621. https://doi.org/10.1007/s11434-012-5411-9 |
[152] | Research GV Enzymes Market Size, Share & Trends Analysis Report By Type (Industrial, Specialty), By Product (Carbohydrase, Proteases), By Source (Microorganisms, Animals), By Region, And Segment Forecasts, 2021 - 2028. Grand View Research 978-1-68038-022-4 978-1-68038-022-4. 153 p (2021). |
[153] | Siqueira JGW, Rodrigues C, Vandenberghe LPdS, et al. (2020) Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: A review. Biomass Bioenergy 132: 105419. https://doi.org/10.1016/j.biombioe.2019.105419 |
[154] | Niladevi KN (2009) Ligninolytic enzymes. Biotechnology for Agro-Industrial Residues Utilisation: Utilisation of Agro-Residues. Dordrecht: Springer Netherlands 397-414. https://doi.org/10.1007/978-1-4020-9942-7_22 |
[155] | Xu FJ, Chen HZ, Li ZH (2001) Solid-state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam-exploded straw as substrate. Bioresour Technol 80: 149-151. https://doi.org/10.1016/S0960-8524(01)00082-7 |