Vibrio cholerae is a non-invasive enteric pathogen known to cause a major public health problem called cholera. The pathogen inhabits the aquatic environment while outside the human host, it is transmitted into the host easily through ingesting contaminated food and water containing the vibrios, thus causing diarrhoea and vomiting. V. cholerae must resist several layers of colonization resistance mechanisms derived from the host or the gut commensals to successfully survive, grow, and colonize the distal intestinal epithelium, thus causing an infection. The colonization resistance mechanisms derived from the host are not specific to V. cholerae but to all invading pathogens. However, some of the gut commensal-derived colonization resistance may be more specific to the pathogen, making it more challenging to overcome. Consequently, the pathogen has evolved well-coordinated mechanisms that sense and utilize the anti-colonization factors to modulate events that promote its survival and colonization in the gut. This review is aimed at discussing how V. cholerae interacts and resists both host- and microbe-specific colonization resistance mechanisms to cause infection.
Citation: Abdullahi Yusuf Muhammad, Malik Amonov, Chandrika Murugaiah, Atif Amin Baig, Marina Yusoff. Intestinal colonization against Vibrio cholerae: host and microbial resistance mechanisms[J]. AIMS Microbiology, 2023, 9(2): 346-374. doi: 10.3934/microbiol.2023019
Vibrio cholerae is a non-invasive enteric pathogen known to cause a major public health problem called cholera. The pathogen inhabits the aquatic environment while outside the human host, it is transmitted into the host easily through ingesting contaminated food and water containing the vibrios, thus causing diarrhoea and vomiting. V. cholerae must resist several layers of colonization resistance mechanisms derived from the host or the gut commensals to successfully survive, grow, and colonize the distal intestinal epithelium, thus causing an infection. The colonization resistance mechanisms derived from the host are not specific to V. cholerae but to all invading pathogens. However, some of the gut commensal-derived colonization resistance may be more specific to the pathogen, making it more challenging to overcome. Consequently, the pathogen has evolved well-coordinated mechanisms that sense and utilize the anti-colonization factors to modulate events that promote its survival and colonization in the gut. This review is aimed at discussing how V. cholerae interacts and resists both host- and microbe-specific colonization resistance mechanisms to cause infection.
[1] | Hsiao A, Zhu J (2020) Pathogenicity and virulence regulation of Vibrio cholerae at the interface of host-gut microbiome interactions. Virulence 11: 1582-1599. https://doi.org/10.1080/21505594.2020.1845039 |
[2] | World Health Organization=Organisation mondiale de la Santé.Weekly epidemiological record. Weekly Epidemiological Record=Relevé épidémiologique hebdomadaire (2018) 93: 489-500. Available from: https://apps.who.int/iris/handle/10665/274654. |
[3] | Cho JY, Liu R, Macbeth JC, et al. (2021) The interface of Vibrio cholerae and the gut microbiome. Gut Microbes 13: 1937015. https://doi.org/10.1080/19490976.2021.1937015 |
[4] | Islam MS, Zaman MH, Islam MS, et al. (2020) Environmental reservoirs of Vibrio cholerae. Vaccine 38: A52-A62. https://doi.org/10.1016/j.vaccine.2019.06.033 |
[5] | Kaper JB, Morris JG, Levine MM (1995) Cholera. Clini Microbiol Rev 8: 48-86. https://doi.org/10.1128/CMR.8.1.48 |
[6] | Faruque SM, Albert MJ, Mekalanos JJ (1998) Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. MMBR 62: 1301-1314. https://doi.org/10.1128/MMBR.62.4.1301-1314.1998 |
[7] | Millet YA, Alvarez D, Ringgaard S, et al. (2014) Insights into Vibrio cholerae intestinal colonization from monitoring fluorescently labeled bacteria. PLoS Pathog 10: e1004405. https://doi.org/10.1371/journal.ppat.1004405 |
[8] | Sender R, Fuchs S, Milo R (2016) Are we really vastly outnumbered? revisiting the ratio of bacterial to host cells in humans. Cell 164: 337-340. https://doi.org/10.1016/j.cell.2016.01.013 |
[9] | Pop M, Paulson JN, Chakraborty S, et al. (2016) Individual-specific changes in the human gut microbiota after challenge with enterotoxigenic Escherichia coli and subsequent ciprofloxacin treatment. BMC Genomics 17. https://doi.org/10.1186/s12864-016-2777-0 |
[10] | Thelin KH, Taylor RK (1996) Toxin-coregulated pilus, but not mannose-sensitive hemagglutinin, is required for colonization by Vibrio cholerae O1 El Tor biotype and O139 strains. Infect Immun 64: 2853-2856. https://doi.org/10.1128/iai.64.7.2853-2856.1996 |
[11] | Peterson KM, Gellings PS (2018) Multiple intraintestinal signals coordinate the regulation of Vibrio cholerae virulence determinants. Pathog Dis 76. https://doi.org/10.1093/femspd/ftx126 |
[12] | Ducarmon QR, Zwittink RD, Hornung B, et al. (2019) Gut microbiota and colonization resistance against bacterial enteric infection. MMBR 83: e00007-19. https://doi.org/10.1128/MMBR.00007-19 |
[13] | Sack RB, Miller CE (1969) Progressive changes of Vibrio serotypes in germ-free mice infected with Vibrio cholerae. J Bacteriol 99: 688-695. https://doi.org/10.1128/jb.99.3.688-695.1969 |
[14] | Pickard JM, Zeng MY, Caruso R, et al. (2017) Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev 279: 70-89. https://doi.org/10.1111/imr.12567 |
[15] | Wang H, Naseer N, Chen Y, et al. (2017) OxyR2 modulates OxyR1 activity and Vibrio cholerae oxidative stress response. Infect Immun 85: e00929-16. https://doi.org/10.1128/IAI.00929-16 |
[16] | Wang H, Chen S, Zhang J, et al. (2012) Catalases promote resistance of oxidative stress in Vibrio cholerae. PloSOne 7: e53383. https://doi.org/10.1371/journal.pone.0053383 |
[17] | Xia X, Larios-Valencia J, Liu Z, et al. (2017) OxyR-activated expression of Dps is important for Vibrio cholerae oxidative stress resistance and pathogenesis. PloS One 12: e0171201. https://doi.org/10.1371/journal.pone.0171201 |
[18] | Wang H, Xing X, Wang J, et al. (2018) Hypermutation-induced in vivo oxidative stress resistance enhances Vibrio cholerae host adaptation. PLoS Pathog 14: e1007413. https://doi.org/10.1371/journal.ppat.1007413 |
[19] | Stern AM, Hay AJ, Liu Z, et al. (2012) The NorR regulon is critical for Vibrio cholerae resistance to nitric oxide and sustained colonization of the intestines. mBio 3: e00013-e12. https://doi.org/10.1128/mBio.00013-12 |
[20] | Stern AM, Liu B, Bakken LR, et al. (2013) A novel protein protects bacterial iron-dependent metabolism from nitric oxide. J bacterial 195: 4702-4708. https://doi.org/10.1128/JB.00836-13 |
[21] | Faruque SM, Biswas K, Udden SM, et al. (2006) Transmissibility of cholera: in vivo-formed biofilms and their relationship to infectivity and persistence in the environment. Proc Natl Acad Sci USA 103: 6350-6355. https://doi.org/10.1073/pnas.0601277103 |
[22] | Sengupta C, Mukherjee O, Chowdhury R (2016) adherence to intestinal cells promotes biofilm formation in Vibrio cholerae. J Infect Dis 214: 1571-1578. https://doi.org/10.1093/infdis/jiw435 |
[23] | Hofmann AF (1999) Bile acids: The good, the bad, and the ugly. Am Physiol Soc 14: 24-29. https://doi.org/10.1152/physiologyonline.1999.14.1.24 |
[24] | Ridlon JM, Harris SC, Bhowmik S, et al. (2016) Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 7: 22-39. https://doi.org/10.1080/19490976.2015.1127483 |
[25] | Song Z, Cai Y, Lao X, et al. (2019) Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. Microbiome 7: 9. https://doi.org/10.1186/s40168-019-0628-3 |
[26] | Wahlström A, Sayin SI, Marschall HU, et al. (2016) intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 24: 41-50. https://doi.org/10.1016/j.cmet.2016.05.005 |
[27] | Hay AJ, Zhu J (2014) host intestinal signal-promoted biofilm dispersal induces vibrio cholerae colonization. Infect Immun 83: 317-323. https://doi.org/10.1128/IAI.02617-14 |
[28] | Lowden MJ, Skorupski K, Pellegrini M, et al. (2010) Structure of Vibrio cholerae ToxT reveals a mechanism for fatty acid regulation of virulence genes. Proc Natl Acad Sci 107: 2860-2865. https://doi.org/10.1073/pnas.0915021107 |
[29] | Bina XR, Howard MF, Taylor-Mulneix DL, et al. (2018) The Vibrio cholerae RND efflux systems impact virulence factor production and adaptive responses via periplasmic sensor proteins. PLoS Pathog 14: e1006804. https://doi.org/10.1371/journal.ppat.1006804 |
[30] | Simonet VC, Baslé A, Klose KE, et al. (2003) The Vibrio cholerae porins OmpU and OmpT have distinct channel properties. J Biol Chem 278: 17539-17545. https://doi.org/10.1074/jbc.M301202200 |
[31] | Cerda-Maira FA, Ringelberg CS, Taylor RK (2008) The bile response repressor BreR regulates expression of the Vibrio cholerae breAB efflux system operon. J Bacteriol 190: 7441-7452. https://doi.org/10.1128/JB.00584-08 |
[32] | Provenzano D, Klose KE (2000) Altered expression of the ToxR-regulated porins OmpU and OmpT diminishes Vibrio cholerae bile resistance, virulence factor expression, and intestinal colonization. Proc Natl Acad Sci USA 97: 10220-4. https://doi.org/10.1073/pnas.170219997 |
[33] | Ante VM, Bina XR, Howard MF, et al. (2015) Vibrio cholerae leuO transcription is positively regulated by ToxR and contributes to bile resistance. J Bacteriol 197: 3499-3510. https://doi.org/10.1128/JB.00419-15 |
[34] | Chatterjee A, Chaudhuri S, Saha G, et al. (2004) Effect of bile on the cell surface permeability barrier and efflux system of Vibrio cholerae. J Bacteriology 186: 6809-6814. https://doi.org/10.1128/JB.186.20.6809-6814.2004 |
[35] | Depuydt M, Messens J, Collet JF (2011) How proteins form disulfide bonds. Antioxid Redox Signal 15: 49-66. https://doi.org/10.1089/ars.2010.3575 |
[36] | Xue Y, Tu F, Shi M, et al. (2016) Redox pathway sensing bile salts activates virulence gene expression in Vibrio cholerae. Mol Microbiol 102: 909-924. https://doi.org/10.1111/mmi.13497 |
[37] | Hay AJ, Yang M, Xia X, et al. (2017) Calcium enhances bile salt-dependent virulence activation in Vibrio cholerae. Infect Immun 85. https://doi.org/10.1128/IAI.00707-16 |
[38] | Fengler VH, Boritsch EC, Tutz S, et al. (2012) Disulfide bond formation and ToxR activity in Vibrio cholerae. PloS One 7: e47756. https://doi.org/10.1371/journal.pone.0047756 |
[39] | Qin Z, Yang X, Chen G, et al. (2020) Crosstalks between gut microbiota and Vibrio Cholerae. Front Cell Infect Microbiol 10: 582554. https://doi.org/10.3389/fcimb.2020.582554 |
[40] | Johansson ME, Larsson JM, Hansson GC (2011) The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci USA 108: 4659-4665. https://doi.org/10.1073/pnas.1006451107 |
[41] | Desai MS, Seekatz AM, Koropatkin NM, et al. (2016) A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167: 1339-1353.e21. https://doi.org/10.1016/j.cell.2016.10.043 |
[42] | Unterweger D, Kitaoka M, Miyata ST, et al. (2012) Constitutive type VI secretion system expression gives Vibrio cholerae intra- and interspecific competitive advantages. PloS One 7: e48320. https://doi.org/10.1371/journal.pone.0048320 |
[43] | Miyata ST, Kitaoka M, Brooks TM, et al. (2011) Vibrio cholerae requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum. Infect Immunity 79: 2941-2949. https://doi.org/10.1128/IAI.01266-10 |
[44] | Fu Y, Waldor MK, Mekalanos JJ (2013) Tn-Seq analysis of Vibrio cholerae intestinal colonization reveals a role for T6SS-mediated antibacterial activity in the host. Cell Host Microbe 14: 652-663. https://doi.org/10.1016/j.chom.2013.11.001 |
[45] | Zhao W, Caro F, Robins W, et al. (2018) Antagonism toward the intestinal microbiota and its effect on Vibrio cholerae virulence. Science 359: 210-213. https://doi.org/10.1126/science.aap8775 |
[46] | Selwal KK, Selwal MK, Yu Z (2021) Mucolytic bacteria: prevalence in various pathological diseases. World J Microbiol Biotechnol 37: 176. https://doi.org/10.1007/s11274-021-03145-9 |
[47] | Sharmila T, Thomas TA (2018) Pathogenesis of cholera: recent prospectives in rapid detection and prevention of Cholera. Bacterial Pathogenesis and Antibacterial Control.IntechOpen. https://doi.org/10.5772/intechopen.74071 |
[48] | Wang J, Xing X, Yang X, et al. (2018) Gluconeogenic growth of Vibrio cholerae is important for competing with host gut microbiota. J Med Microbiol 67: 1628-1637. https://doi.org/10.1099/jmm.0.000828 |
[49] | Xu Q, Dziejman M, Mekalanos JJ (2003) Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro. Proc Natl Acad Sci USA 100: 1286-1291. https://doi.org/10.1073/pnas.0337479100 |
[50] | Van Alst AJ, DiRita VJ (2020) Aerobic metabolism in Vibrio cholerae is required for population expansion during infection. mBio 11: e01989-20. https://doi.org/10.1128/mBio.01989-20 |
[51] | Braun M, Thöny-Meyer L (2005) Cytochrome c maturation and the physiological role of c-type cytochromes in Vibrio cholerae. J Bacteriol 187: 5996-6004. https://doi.org/10.1128/JB.187.17.5996-6004.2005 |
[52] | Lee KM, Park Y, Bari W, et al. (2012) Activation of cholera toxin production by anaerobic respiration of trimethylamine N-oxide in Vibrio cholerae. J Biol Chem 287: 39742-39752. https://doi.org/10.1074/jbc.M112.394932 |
[53] | Liu Z, Wang H, Zhou Z, et al. (2016) Differential thiol-based switches jump-start vibrio cholerae pathogenesis. Cell Rep 14: 347-354. https://doi.org/10.1016/j.celrep.2015.12.038 |
[54] | Mukherjee S, Bassler BL (2019) Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol 17: 371-382. https://doi.org/10.1038/s41579-019-0186-5 |
[55] | Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21: 319-346. https://doi.org/10.1146/annurev.cellbio.21.012704.131001 |
[56] | Kim EK, Lee KA, Hyeon DY, et al. (2020) Bacterial nucleoside catabolism controls quorum sensing and commensal-to-pathogen transition in the drosophila Gut. Cell Host Microbe 27: 345-357.e6. https://doi.org/10.1016/j.chom.2020.01.025 |
[57] | Jung SA, Chapman CA, Ng WL (2015) Quadruple quorum-sensing inputs control Vibrio cholerae virulence and maintain system robustness. PLoS Pathog 11: e1004837. https://doi.org/10.1371/journal.ppat.1004837 |
[58] | Herzog R, Peschek N, Fröhlich KS, et al. (2019) Three autoinducer molecules act in concert to control virulence gene expression in Vibrio cholerae. Nucleic Acids Res 47: 3171-3183. https://doi.org/10.1093/nar/gky1320 |
[59] | Duan F, March JC (2010) Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model. Proc Natl Acad Sci USA 107: 11260-11264. https://doi.org/10.1073/pnas.1001294107 |
[60] | Hsiao A, Ahmed AM, Subramanian S, et al. (2014) Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 515: 423-426. https://doi.org/10.1038/nature13738 |
[61] | Sun J, Daniel R, Wagner-Döbler I, et al. (2004) Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. BMC Evol Biol 4: 36. https://doi.org/10.1186/1471-2148-4-36 |
[62] | Chen X, Schauder S, Potier N, et al. (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415: 545-549. https://doi.org/10.1038/415545a |
[63] | Pereira CS, Thompson JA, Xavier KB (2013) AI-2-mediated signalling in bacteria. FEMS Microbiol Rev 37: 156-181. https://doi.org/10.1111/j.1574-6976.2012.00345.x |
[64] | Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harbor Perspect Med 2: a012427. https://doi.org/10.1101/cshperspect.a012427 |
[65] | Zhu J, Mekalanos JJ (2003) Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev Cell 5: 647-656. https://doi.org/10.1016/s1534-5807(03)00295-8 |
[66] | Zhu J, Miller MB, Vance RE, et al. (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proce Natl Acad Sci USA 99: 3129-3134. https://doi.org/10.1073/pnas.052694299 |
[67] | Freeman JA, Bassler BL (1999) Sequence and function of LuxU: a two-component phosphorelay protein that regulates quorum sensing in Vibrio harveyi. J Bacteriol 181: 899-906. https://doi.org/10.1128/JB.181.3.899-906.1999 |
[68] | Freeman JA, Bassler BL (1999) A genetic analysis of the function of LuxO, a two-component response regulator involved in quorum sensing in Vibrio harveyi. Mol Microbiol 31: 665-677. https://doi.org/10.1046/j.1365-2958.1999.01208.x |
[69] | Lenz DH, Mok KC, Lilley BN, et al. (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118: 69-82. https://doi.org/10.1016/j.cell.2004.06.009 |
[70] | Feng L, Rutherford ST, Papenfort K, et al. (2015) A qrr noncoding RNA deploys four different regulatory mechanisms to optimize quorum-sensing dynamics. Cell 160: 228-240. https://doi.org/10.1016/j.cell.2014.11.051 |
[71] | Shao Y, Bassler BL (2014) Quorum regulatory small RNAs repress type VI secretion. Mol Microbiol 92: 921-930. https://doi.org/10.1111/mmi.12599 |
[72] | Jung SA, Hawver LA, Ng WL (2016) Parallel quorum sensing signaling pathways in Vibrio cholerae. Curr genet 62: 255-260. https://doi.org/10.1007/s00294-015-0532-8 |
[73] | Rutherford ST, van Kessel JC, Shao Y, et al. (2011) AphA and LuxR/HapR reciprocally control quorum sensing in vibrios. Genes Dev 25: 397-408. https://doi.org/10.1101/gad.2015011 |
[74] | Finkelstein RA, Boesman-Finkelstein M, Chang Y, et al. (1992) Vibrio cholerae hemagglutinin/protease, colonial variation, virulence, and detachment. Infect Immun 60: 472-478. https://doi.org/10.1128/iai.60.2.472-478.1992 |
[75] | Gorelik O, Levy N, Shaulov L, et al. (2019) Vibrio cholerae autoinducer-1 enhances the virulence of enteropathogenic Escherichia coli. Sci Rep 9: 4122. https://doi.org/10.1038/s41598-019-40859-1 |
[76] | Momose Y, Hirayama K, Itoh K (2008) Competition for proline between indigenous Escherichia coli and E. coli O157:H7 in gnotobiotic mice associated with infant intestinal microbiota and its contribution to the colonization resistance against E. coli O157:H7. Antonie van Leeuwenhoek 94: 165-171. https://doi.org/10.1007/s10482-008-9222-6 |
[77] | Fabich AJ, Jones SA, Chowdhury FZ, et al. (2008) Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect Immun 76: 1143-1152. https://doi.org/10.1128/IAI.01386-07 |
[78] | Sicard JF, Le Bihan G, Vogeleer P, et al. (2017) Interactions of intestinal bacteria with components of the intestinal mucus. Front Cell Infect Microbiol 7: 387. https://doi.org/10.3389/fcimb.2017.00387 |
[79] | Tailford LE, Crost EH, Kavanaugh D, et al. (2015) Mucin glycan foraging in the human gut microbiome. Front Genet 6: 81. https://doi.org/10.3389/fgene.2015.00081 |
[80] | Rohmer L, Hocquet D, Miller SI (2011) Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Microbiology 19: 341-348. https://doi.org/10.1016/j.tim.2011.04.003 |
[81] | Idota T, Kawakami H, Nakajima I (1994) Growth-promoting effects of N-acetylneuraminic acid-containing substances on bifidobacteria. Biosci Biotechnol Biochem 58: 1720-1722. https://doi.org/10.1271/bbb.58.1720 |
[82] | Almagro-Moreno S, Boyd EF (2009) Sialic acid catabolism confers a competitive advantage to pathogenic vibrio cholerae in the mouse intestine. Infect Immun 77: 3807-3816. https://doi.org/10.1128/IAI.00279-09 |
[83] | Reddi G, Pruss K, Cottingham KL, et al. (2018) Catabolism of mucus components influences motility of Vibrio cholerae in the presence of environmental reservoirs. PloS One 13: e0201383. https://doi.org/10.1371/journal.pone.0201383 |
[84] | Pereira FC, Wasmund K, Čobanković I, et al. (2020) Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nat Commun 11. https://doi.org/10.1038/s41467-020-18928-1 |
[85] | Rosenberger J, McDonald ND, Boyd EF (2020) L-ascorbic acid (vitamin C) fermentation by the human pathogen Vibrio cholerae. bioRxiv . https://doi.org/10.1101/2020.09.08.288738 |
[86] | Roth JR, Lawrence JG, Bobik TA (1996) Cobalamin (coenzyme B12): synthesis and biological significance. Annu Rev Microbiol 50: 137-181. https://doi.org/10.1146/annurev.micro.50.1.137 |
[87] | Soto-Martin EC, Warnke I, Farquharson FM, et al. (2020) Vitamin biosynthesis by human gut butyrate-producing bacteria and cross-feeding in synthetic microbial communities. mBio 11: e00886-20. https://doi.org/10.1128/mBio.00886-20 |
[88] | Bogard RW, Davies B, Mekalanos JJ (2012) MetR-regulated Vibrio cholerae metabolism is required for virulence. mBio 3: e00236-12. https://doi.org/10.1128/mBio.00236-12 |
[89] | Waldron KJ, Rutherford JC, Ford D, et al. (2009) Metalloproteins and metal sensing. Nature 460: 823-830. https://doi.org/10.1038/nature08300 |
[90] | Sheng Y, Fan F, Jensen O, et al. (2015) Dual zinc transporter systems in Vibrio cholerae promote competitive advantages over gut microbiome. Infect Immun 83: 3902-3908. https://doi.org/10.1128/IAI.00447-15 |
[91] | Rivera-Chávez F, Mekalanos JJ (2019) Cholera toxin promotes pathogen acquisition of host-derived nutrients. Nature 572: 244-248. https://doi.org/10.1038/s41586-019-1453-3 |
[92] | Jaeggi T, Kortman GA, Moretti D, et al. (2015) Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut 64: 731-742. https://doi.org/10.1136/gutjnl-2014-307720 |
[93] | Rea MC, Sit CS, Clayton E, et al. (2010) Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proce Natl Acad Sci USA 107: 9352-9357. https://doi.org/10.1073/pnas.0913554107 |
[94] | Hammami R, Fernandez B, Lacroix C, et al. (2013) Anti-infective properties of bacteriocins: an update. CMLS 70: 2947-2967. https://doi.org/10.1007/s00018-012-1202-3 |
[95] | Venkova T, Yeo CC, Espinosa M (2018) Editorial: The good, the bad, and the ugly: multiple roles of bacteria in human life. Front Microbiol 9: 1702. https://doi.org/10.3389/fmicb.2018.01702 |
[96] | Cotter PD, Ross RP, Hill C (2013) Bacteriocins-a viable alternative to antibiotics?. Nat Rev Microbiol 11: 95-105. https://doi.org/10.1038/nrmicro2937 |
[97] | Spelhaug SR, Harlander SK (1989) Inhibition of foodborne bacterial pathogens by bacteriocins from Lactococcus lactis and Pediococcus pentosaceous1. J Food Prot 52: 856-862. https://doi.org/10.4315/0362-028X-52.12.856 |
[98] | Olasupo NA, Olukoya DK, Odunfa SA (2008) Assessment of a bacteriocin-producingLactobacillus strain in the control of spoilage of a cereal-based African fermented food. Folia Microbiol 42: 31-34. https://doi.org/10.1007/BF02898642 |
[99] | Merino-Contreras ML, Sánchez-Morales F, Jiménez-Badillo MD, et al. (2018) Partial characterization of digestive proteases in sheepshead, Archosargus probatocephalus (Spariformes: Sparidae). Neotrop Ichthyol 16. https://doi.org/10.1590/1982-0224-20180020 |
[100] | Duperthuy M, Sjöström AE, Sabharwal D, et al. (2013) Role of the Vibrio cholerae matrix protein Bap1 in cross-resistance to antimicrobial peptides. PLoS Pathog 9: e1003620. https://doi.org/10.1371/journal.ppat.1003620 |
[101] | Saul-McBeth J, Matson JS (2019) A periplasmic antimicrobial peptide-binding protein is required for stress survival in Vibrio cholerae. Front Microbiol 10: 161. https://doi.org/10.3389/fmicb.2019.00161 |
[102] | Bina XR, Howard MF, Taylor-Mulneix DL, et al. (2018) The Vibrio cholerae RND efflux systems impact virulence factor production and adaptive responses via periplasmic sensor proteins. PLoS Pathog 14: e1006804. https://doi.org/10.1371/journal.ppat.1006804 |
[103] | Ríos-Covián D, Ruas-Madiedo P, Margolles A, et al. (2016) Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 7: 185. https://doi.org/10.3389/fmicb.2016.00185 |
[104] | Parada Venegas D, De la Fuente MK, Landskron G, et al. (2019) Short chain fatty acids (scfas)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 10: 277. https://doi.org/10.3389/fimmu.2019.00277 |
[105] | Repaske DR, Adler J (1981) Change in intracellular pH of Escherichia coli mediates the chemotactic response to certain attractants and repellents. J Bacteriol 145: 1196-1208. https://doi.org/10.1128/jb.145.3.1196-1208.1981 |
[106] | Tang JY, Izenty BI, Nur' Izzati AJ, et al. (2013) Survivability of Vibrio cholerae O1 in cooked rice, coffee, and tea. Int J Food Sci 2013: 581648. https://doi.org/10.1155/2013/581648 |
[107] | Mottawea W, Chiang CK, Mühlbauer M, et al. (2016) Altered intestinal microbiota-host mitochondria crosstalk in new onset Crohn's disease. Nat Commun 7: 13419. https://doi.org/10.1038/ncomms13419 |
[108] | Kamareddine L, Wong A, Vanhove AS, et al. (2018) Activation of Vibrio cholerae quorum sensing promotes survival of an arthropod host. Nat Microbiol 3: 243-252. https://doi.org/10.1038/s41564-017-0065-7 |
[109] | Monira S, Hoq M, Chowdhury A, et al. (2010) Short-chain fatty acids and commensal microbiota in the faeces of severely malnourished children with cholera rehydrated with three different carbohydrates. Eur J Clin Nutr 64: 1116-1124. https://doi.org/10.1038/ejcn.2010.123 |
[110] | You JS, Yong JH, Kim GH, et al. (2019) Commensal-derived metabolites govern Vibrio cholerae pathogenesis in host intestine. Microbiome 7: 132. https://doi.org/10.1186/s40168-019-0746-y |
[111] | Resch CT, Winogrodzki JL, Patterson CT, et al. (2010) The putative Na+/H+ antiporter of Vibrio cholerae, Vc-NhaP2, mediates the specific K+/H+ exchange in vivo. Biochemistry 49: 2520-2528. https://doi.org/10.1021/bi902173y |
[112] | Chand D, Avinash VS, Yadav Y, et al. (2017) Molecular features of bile salt hydrolases and relevance in human health. Biochim Biophys Acta Gene Subj 1861: 2981-2991. https://doi.org/10.1016/j.bbagen.2016.09.024 |
[113] | Smet ID, Hoorde LV, Saeyer ND, et al. (1994) in vitro study of bile salt hydrolase (BSH) activity of BSH isogenic lactobacillus plantarum 80 strains and estimation of cholesterol lowering through enhanced BSH activity. Microb Ecol Health Dis 7: 315-329. https://doi.org/10.3109/08910609409141371 |
[114] | Song Z, Cai Y, Lao X, et al. (2019) Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. Microbiome 7: 9. https://doi.org/10.1186/s40168-019-0628-3 |
[115] | Alavi S, Mitchell JD, Cho JY, et al. (2020) Interpersonal gut microbiome variation drives susceptibility and resistance to cholera infection. Cell 181: 1533-1546.e13. https://doi.org/10.1016/j.cell.2020.05.036 |
[116] | Yang M, Liu Z, Hughes C, et al. (2013) Bile salt-induced intermolecular disulfide bond formation activates Vibrio cholerae virulence. Proc Natl Acad Sci USA 110: 2348-2353. https://doi.org/10.1073/pnas.1218039110 |
[117] | Bachmann V, Kostiuk B, Unterweger D, et al. (2015) Bile salts modulate the mucin-activated type vi secretion system of pandemic vibrio cholerae. PLoS Neglected Trop Dis 9: e0004031. https://doi.org/10.1371/journal.pntd.0004031 |
[118] | King AA, Ionides EL, Pascual M, et al. (2008) Inapparent infections and cholera dynamics. Nature 454: 877-880. https://doi.org/10.1038/nature07084 |
[119] | Midgett CR, Almagro-Moreno S, Pellegrini M, et al. (2017) Bile salts and alkaline pH reciprocally modulate the interaction between the periplasmic domains of Vibrio cholerae ToxR and ToxS. Mol Microbiol 105. https://doi.org/10.1111/mmi.13699 |
[120] | Hung DT, Mekalanos JJ (2005) Bile acids induce cholera toxin expression in Vibrio cholerae in a ToxT-independent manner. Proce Natl Acad Sci USA 102: 3028-3033. https://doi.org/10.1073/pnas.0409559102 |
[121] | Barrasso K, Chac D, Debela MD, et al. (2022) Impact of a human gut microbe on Vibrio cholerae host colonization through biofilm enhancement. eLife 11: e73010. https://doi.org/10.7554/eLife.73010 |
[122] | Dickinson EC, Gorga JC, Garrett M, et al. (1998) Immunoglobulin A supplementation abrogates bacterial translocation and preserves the architecture of the intestinal epithelium. Surgery 124: 284-290. https://doi.org/10.1016/S0039-6060(98)70132-1 |
[123] | Macpherson AJ, Hunziker L, McCoy K, et al. (2001) IgA responses in the intestinal mucosa against pathogenic and non-pathogenic microorganisms. Microbes Infect 3: 1021-1035. https://doi.org/10.1016/s1286-4579(01)01460-5 |
[124] | Mantis NJ, Rol N, Corthésy B (2011) Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol 4: 603-611. https://doi.org/10.1038/mi.2011.41 |
[125] | Hsiao A, Liu Z, Joelsson A, et al. (2006) Vibrio cholerae virulence regulator-coordinated evasion of host immunity. Proc Natl Acad Sci USA 103: 14542-14547. https://doi.org/10.1073/pnas.0604650103 |
[126] | Watnick PI, Fullner KJ, Kolter R (1999) A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. J Bacteriol 181: 3606-3609. https://doi.org/10.1128/JB.181.11.3606-3609.1999 |
[127] | Çakar F, Zingl FG, Moisi M, et al. (2018) In vivo repressed genes of Vibrio cholerae reveal inverse requirements of an H+/Cl− transporter along the gastrointestinal passage. Proc Natl Acad Sci USA 115: E2376-E2385. https://doi.org/10.1073/pnas.1716973115 |
[128] | Chakrabarti S, Sengupta N, Chowdhury R (1999) Role of DnaK in in vitro and in vivo expression of virulence factors of Vibrio cholerae. Infect Immun 67: 1025-1033. https://doi.org/10.1128/IAI.67.3.1025-1033.1999 |
[129] | Higa N, Honma Y, Albert MJ, et al. (1993) Characterization of Vibrio cholerae O139 Synonym bengal isolated from patients with cholera-like disease in Bangladesh. Microbiol Immunol 37: 971-974. https://doi.org/10.1111/j.1348-0421.1993.tb01731.x |
[130] | Lee SH, Hava DL, Waldor MK, et al. (1999) Regulation and temporal expression patterns of Vibrio cholerae virulence genes during infection. Cell 99: 625-634. https://doi.org/10.1016/s0092-8674(00)81551-2 |
[131] | Mandlik A, Livny J, Robins WP, et al. (2011) RNA-Seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression. Cell Host Microbe 10: 165-174. https://doi.org/10.1016/j.chom.2011.07.007 |
[132] | Osorio CG, Crawford JA, Michalski J, et al. (2005) Second-generation recombination-based in vivo expression technology for large-scale screening for Vibrio cholerae genes induced during infection of the mouse small intestine. Infect Immun 73: 972-980. https://doi.org/10.1128/IAI.73.2.972-980.2005 |
[133] | Schild S, Tamayo R, Nelson EJ, et al. (2007) Genes induced late in infection increase fitness of Vibrio cholerae after release into the environment. Cell Host Microbe 2: 264-277. https://doi.org/10.1016/j.chom.2007.09.004 |
[134] | DiRita VJ, Parsot C, Jander G, et al. (1991) Regulatory cascade controls virulence in Vibrio cholerae. Proc Natl Acad Sci USA 88: 5403-5407. https://doi.org/10.1073/pnas.88.12.5403 |
[135] | Nygren E, Li BL, Holmgren J, et al. (2009) Establishment of an adult mouse model for direct evaluation of the efficacy of vaccines against Vibrio cholerae. Infect Immun 77: 3475-3484. https://doi.org/10.1128/IAI.01197-08 |
[136] | Butterton JR, Ryan ET, Shahin RA, et al. (1996) Development of a germfree mouse model of Vibrio cholerae infection. Infect Immun 64: 4373-4377. https://doi.org/10.1128/iai.64.10.4373-4377.1996 |
[137] | Sawasvirojwong S, Srimanote P, Chatsudthipong V, et al. (2013) An adult mouse model of vibrio cholerae-induced diarrhea for studying pathogenesis and potential therapy of cholera. PLoS Neglected Trop Dis 7: e2293. https://doi.org/10.1371/journal.pntd.0002293 |
[138] | Olivier V, Queen J, Satchell KJF (2009) Successful small intestine colonization of adult mice by Vibrio cholerae requires ketamine anesthesia and accessory toxins. PLoS One 4: e7352. https://doi.org/10.1371/journal.pone.0007352 |
[139] | Watve S, Barrasso K, Jung SA, et al. (2020) Parallel quorum-sensing system in Vibrio cholerae prevents signal interference inside the host. PLoS Pathog 16: e1008313. https://doi.org/10.1371/journal.ppat.1008313 |
[140] | Levade I, Saber MM, Midani FS, et al. (2021) Predicting Vibrio cholerae infection and disease severity using metagenomics in a prospective cohort study. J Infect Dis 223: 342-351. https://doi.org/10.1093/infdis/jiaa358 |
[141] | Midani FS, Weil AA, Chowdhury F, et al. (2018) Human gut microbiota predicts susceptibility to Vibrio cholerae infection. J Infect Dis 218: 645-653. https://doi.org/10.1093/infdis/jiy192 |
[142] | Saha D, LaRocque RC, Khan, AI, et al. (2004) Incomplete correlation of serum vibriocidal antibody titer with protection from Vibrio cholerae infection in urban Bangladesh. J Infect Dis 189: 2318-2322. https://doi.org/10.1086/421275 |
[143] | Yoon MY, Min KB, Lee KM, et al. (2016) A single gene of a commensal microbe affects host susceptibility to enteric infection. Nat Commun 7: 11606. https://doi.org/10.1038/ncomms11606 |
[144] | Stecher B, Chaffron S, Käppeli R, et al. (2010) Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog 6: e1000711. https://doi.org/10.1371/journal.ppat.1000711 |
[145] | David LA, Weil A, Ryan ET, et al. (2015) Gut microbial succession follows acute secretory diarrhea in humans. mBio 6: e00381-15. https://doi.org/10.1128/mBio.00381-15 |
[146] | Yatsunenko T, Rey FE, Manary MJ, et al. (2012) Human gut microbiome viewed across age and geography. Nature 486: 222-227. https://doi.org/10.1038/nature11053 |
[147] | World Health Organization = Organisation mondiale de la Santé.Cholera, 2017 – Choléra, 2017. Weekly Epidemiological Record = Relevé épidémiologique hebdomadaire (2018) 93: 489-496. https://apps.who.int/iris/handle/10665/274655 |
[148] | Matson JS (2018) Infant mouse model of vibrio cholerae infection and colonization. Methods Mol Biol 1839: 147-152. https://doi.org/10.1007/978-1-4939-8685-9_13 |
[149] | Sawasvirojwong S, Srimanote P, Chatsudthipong V, et al. (2013) An adult mouse model of Vibrio cholerae-induced diarrhea for studying pathogenesis and potential therapy of cholera. PLoS Neglected Trop Dis 7: e2293. https://doi.org/10.1371/journal.pntd.0002293 |
[150] | Mohd Rani F, A Rahman NI, Ismail S, et al. (2017) Acinetobacter spp. infections in malaysia: a review of antimicrobial resistance trends, mechanisms and epidemiology. Front Microbiol 8: 2479. https://doi.org/10.3389/fmicb.2017.02479 |
[151] | DE SN (1959) Enterotoxicity of bacteria-free culture-filtrate of Vibrio cholerae. Nature 183: 1533-1534. https://doi.org/10.1038/1831533a0 |
[152] | Rui H, Ritchie JM, Bronson RT, et al. (2010) Reactogenicity of live-attenuated Vibrio cholerae vaccines is dependent on flagellins. Proc Natl Acad Sci USA 107: 4359-4364. https://doi.org/10.1073/pnas.0915164107 |
[153] | Mitchell KC, Breen P, Britton S, et al. (2017) Quantifying Vibrio cholerae enterotoxicity in a Zebrafish infection model. Appl Environ Microbiol 83: e00783-17. https://doi.org/10.1128/AEM.00783-17 |
[154] | Burns A, Stephens W, Stagaman K, et al. (2016) Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J 10: 655-664. https://doi.org/10.1038/ismej.2015.142 |
[155] | Park SY, Heo YJ, Kim KS, et al. (2005) Drosophila melanogaster is susceptible to Vibrio cholerae infection. Mol Cell 20: 409-415. https://doi.org/10.1159/000086648 |
[156] | Neyen C, Bretscher AJ, Binggeli O, et al. (2014) Methods to study Drosophila immunity. Methods 68: 116-128. https://doi.org/10.1016/j.ymeth.2014.02.023 |