Editorial Special Issues

Antimicrobial agents and microbial ecology

  • Antimicrobials are therapeutic substances used to prevent or treat infections. Disinfectants are antimicrobial agents applied to non-living surfaces. Every year, several thousand tonnes of antimicrobials and their by-products are released into the environment and in particular into the aquatic environment. This type of xenobiotic has ecological consequences in the natural environment but also in technological environments such as wastewater treatment plants and methane fermentation sewage sludge treatment plants. The constant exposure of microbial communities not only to high concentrations but also to sub-inhibitory concentrations of antibiotics is a key element in the development of antibiotic resistance in aquatic environments and in soils. The future of antimicrobials lies in the development of biosourced or bioinspired molecules. The observation and deciphering of interactions between living organisms is the key to this development.

    Citation: Patrick Di Martino. Antimicrobial agents and microbial ecology[J]. AIMS Microbiology, 2022, 8(1): 1-4. doi: 10.3934/microbiol.2022001

    Related Papers:

    [1] Wanda C Reygaert . An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 2018, 4(3): 482-501. doi: 10.3934/microbiol.2018.3.482
    [2] Noah T Thompson, David A Kitzenberg, Daniel J Kao . Persister-mediated emergence of antimicrobial resistance in agriculture due to antibiotic growth promoters. AIMS Microbiology, 2023, 9(4): 738-756. doi: 10.3934/microbiol.2023038
    [3] Manjusha Lekshmi, Parvathi Ammini, Jones Adjei, Leslie M. Sanford, Ugina Shrestha, Sanath Kumar, Manuel F. Varela . Modulation of antimicrobial efflux pumps of the major facilitator superfamily in Staphylococcus aureus. AIMS Microbiology, 2018, 4(1): 1-18. doi: 10.3934/microbiol.2018.1.1
    [4] Sunarno Sunarno, Nelly Puspandari, Fitriana Fitriana, Uly Alfi Nikmah, Hasta Handayani Idrus, Novaria Sari Dewi Panjaitan . Extended spectrum beta lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae in Indonesia and South East Asian countries: GLASS Data 2018. AIMS Microbiology, 2023, 9(2): 218-227. doi: 10.3934/microbiol.2023013
    [5] Julian-Dario Rembe, Vivian-Denise Thompson, Ewa Klara Stuermer . Antimicrobials cetylpyridinium-chloride and miramistin demonstrate non-inferiority and no “protein-error” compared to established wound care antiseptics in vitro. AIMS Microbiology, 2022, 8(4): 372-387. doi: 10.3934/microbiol.2022026
    [6] Alberto Bernacchi, Giulia Semenzato, Manuel di Mascolo, Sara Amata, Angela Bechini, Fabiola Berti, Carmela Calonico, Valentina Catania, Giovanni Emiliani, Antonia Esposito, Claudia Greco, Stefano Mocali, Nadia Mucci, Anna Padula, Antonio Palumbo Piccionello, Battogtokh Nasanbat, Gantulga Davaakhuu, Munkhtsetseg Bazarragchaa, Francesco Riga, Claudio Augugliaro, Anna Maria Puglia, Marco Zaccaroni, Fani Renato . Antibacterial activity of Arthrobacter strains isolated from Great Gobi A Strictly Protected Area, Mongolia. AIMS Microbiology, 2024, 10(1): 161-186. doi: 10.3934/microbiol.2024009
    [7] Divakar Dahiya, Caoimhin Mackin, Poonam Singh Nigam . Studies on bioactivities of Manuka and regional varieties of honey for their potential use as natural antibiotic agents for infection control related to wound healing and in pharmaceutical formulations. AIMS Microbiology, 2024, 10(2): 288-310. doi: 10.3934/microbiol.2024015
    [8] Matthew Johnston, Michael McBride, Divakar Dahiya, Richard Owusu-Apenten, Poonam Singh Nigam . Antibacterial activity of Manuka honey and its components: An overview. AIMS Microbiology, 2018, 4(4): 655-664. doi: 10.3934/microbiol.2018.4.655
    [9] Neda Askari, Hassan Momtaz, Elahe Tajbakhsh . Acinetobacter baumannii in sheep, goat, and camel raw meat: virulence and antibiotic resistance pattern. AIMS Microbiology, 2019, 5(3): 272-284. doi: 10.3934/microbiol.2019.3.272
    [10] Rochelle Keet, Diane Rip . Listeria monocytogenes isolates from Western Cape, South Africa exhibit resistance to multiple antibiotics and contradicts certain global resistance patterns. AIMS Microbiology, 2021, 7(1): 40-58. doi: 10.3934/microbiol.2021004
  • Antimicrobials are therapeutic substances used to prevent or treat infections. Disinfectants are antimicrobial agents applied to non-living surfaces. Every year, several thousand tonnes of antimicrobials and their by-products are released into the environment and in particular into the aquatic environment. This type of xenobiotic has ecological consequences in the natural environment but also in technological environments such as wastewater treatment plants and methane fermentation sewage sludge treatment plants. The constant exposure of microbial communities not only to high concentrations but also to sub-inhibitory concentrations of antibiotics is a key element in the development of antibiotic resistance in aquatic environments and in soils. The future of antimicrobials lies in the development of biosourced or bioinspired molecules. The observation and deciphering of interactions between living organisms is the key to this development.



    Antimicrobials are therapeutic substances used to prevent or treat infections. They include antiseptics, antibiotics, antivirals, antifungals and antiparasitics. Disinfectants are antimicrobial agents applied to non-living surfaces. Antimicrobials can kill microorganisms and/or prevent their growth by targeting key steps in cellular metabolism such as the synthesis of biological macromolecules, the activity of cellular enzymes, or cellular structures such as the cell wall, cell membranes [1][4]. The presence of antimicrobial agents in an ecosystem, whether natural or man-made, always has an ecological impact [5].

    Every year, several thousand tonnes of antimicrobials and their by-products are released into the environment and in particular into the aquatic environment [6]. In addition, some antimicrobials are particularly persistent in the environment, which facilitates their diffusion and accumulation in different compartments. This type of xenobiotic has ecological consequences in the natural environment but also in technological environments such as wastewater treatment plants and methane fermentation sewage sludge treatment plants [7][9]. The constant exposure of microbial communities not only to high concentrations but also to sub-inhibitory concentrations of antibiotics is a key element in the development of antibiotic resistance in aquatic environments and in soils [5],[10]. This leads to the development of antibiotic-resistant bacteria and to the spread of genetic determinants of resistance. In this context, environmental biofilms and their associated virome serve as reservoirs for antimicrobial resistance [10]. The development of nanoparticles with antibacterial activity is one of the solutions for combating bacteria that are multi-resistant to antibiotics [11].

    Chlorine-based treatments are widely used during drinking water production and distribution. The post-chlorine treatment survival and regrowth of microorganisms, due to microbial chlorine resistance and to microbial chlorine tolerance, can conduct to an increase of human exposure to waterborne pathogens [12]. Resistance has a genetic origin and is transmissible, whereas tolerance is linked to transient phenotypic adaptations, i.e., extracellular polymeric substances production and biofilm formation [13],[14]. Microbial resistance to chlorine also poses problems for wastewater treatment [15].

    Antimicrobials have been present in nature for much longer than their use by humans. The study of interactions between different microorganisms, whether prokaryotes or eukaryotes, is an important source of new antimicrobial discovery [16][20]. Ecological knowledge of antimicrobial production conditions, functions and roles in an ecosystem is necessary for the discovery of new antimicrobials and their safe and effective use. This approach can also be used for man-made environments like fermented artisanal food products [21].

    The microbial ecology of the human mouth and gastrointestinal tract is very complex. The use of broad-spectrum antimicrobial agents can lead to (i) proliferation of previously minor components of the microbiota, (ii) colonisation by saprophytic organisms, (iii) colonisation by antimicrobial resistant pathogens, which may increase the risk of disease. [22][24]. Cranberry can help prevent urinary tract infections and avoid the use of antibiotics [25],[26]. In contrast to antibiotic treatment, dietary cranberry supplementation does not appear to affect the faecal concentrations of thermotolerant coliforms, Enterococci spp. and Lactobacilli spp. in Wistar rats [27]. Thus, dietary use of cranberry would not disturb the microbial ecology of the intestinal tract.

    Antimicrobials are micropollutants that have a strong impact on different ecosystems. Studies are needed to understand their ecological impact and learn how to control them. The future of antimicrobials lies in the development of biosourced or bioinspired molecules. The observation and deciphering of interactions between living organisms is the key to this development.


    Acknowledgments



    This work has been supported by CNRS GDR 2088 ‘BIOMIM’.

    Conflict of interest



    The author declares no conflicts of interest in this article.

    [1] Purssell E (2020) Antimicrobials. Understanding Pharmacology in Nursing Practice Switzerland: Springer Nature, 147-165. https://doi.org/10.1007/978-3-030-32004-1_6. doi: 10.1007/978-3-030-32004-1_6
    [2] Reygaert WC (2018) An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 4: 482-501. https://doi.org/10.3934/microbiol.2018.3.482. doi: 10.3934/microbiol.2018.3.482
    [3] Di Martino P (2021) Ways to improve biocides for metalworking fluid. AIMS Microbiol 7: 13-27. https://doi.org/10.3934/microbiol.2021002. doi: 10.3934/microbiol.2021002
    [4] Romani M, Warscheid T, Nicole L, et al. (2022) Current and future chemical treatments to fight biodeterioration of building materials and associated biofilms: moving away from ecotoxic and towards efficient, sustainable solutions. Sci Total Environ 802: 149846https://doi.org/10.1016/j.scitotenv.2021.149846. doi: 10.1016/j.scitotenv.2021.149846
    [5] Grenni P, Ancona V, Caracciolo AB (2018) Ecological effects of antibiotics on natural ecosystems: A review. Microchem J 136: 25-39. https://doi.org/10.1016/j.microc.2017.02.006. doi: 10.1016/j.microc.2017.02.006
    [6] Felis E, Kalka J, Sochacki A, et al. (2020) Antimicrobial pharmaceuticals in the aquatic environment - occurrence and environmental implications. Eur J Pharmacol 866: 172813https://doi.org/10.1016/j.ejphar.2019.172813. doi: 10.1016/j.ejphar.2019.172813
    [7] Varela AR, André S, Nunes OC, et al. (2014) Insights into the relationship between antimicrobial residues and bacterial populations in a hospital-urban wastewater treatment plant system. Water Res 54: 327-336. https://doi.org/10.1016/j.watres.2014.02.003. doi: 10.1016/j.watres.2014.02.003
    [8] Du B, Wang Q, Yang Q, et al. (2021) Responses of bacterial and bacteriophage communities to long-term exposure to antimicrobial agents in wastewater treatment systems. J Hazard Mater 414: 125486https://doi.org/10.1016/j.jhazmat.2021.125486. doi: 10.1016/j.jhazmat.2021.125486
    [9] Czatzkowska M, Harnisz M, Korzeniewska E, et al. (2021) The impact of antimicrobials on the efficiency of methane fermentation of sewage sludge, changes in microbial biodiversity and the spread of antibiotic resistance. J Hazard Mater 416: 125773https://doi.org/10.1016/j.jhazmat.2021.125773. doi: 10.1016/j.jhazmat.2021.125773
    [10] Flores-Vargas G, Bergsveinson J, Lawrence JR, et al. (2021) Environmental biofilms as reservoirs for antimicrobial resistance. Front Microbiol 12: 3880https://doi.org/10.3389/fmicb.2021.766242. doi: 10.3389/fmicb.2021.766242
    [11] Hashem NM, Hosny A, Abdelrahman AA, et al. (2021) Antimicrobial activities encountered by sulfur nanoparticles combating Staphylococcal species harboring sccmecA recovered from acne vulgaris. AIMS Microbiol 7: 481-498. https://doi.org/10.3934/microbiol.2021029. doi: 10.3934/microbiol.2021029
    [12] Ekundayo TC, Igwaran A, Oluwafemi YD, et al. (2021) Global bibliometric meta-analytic assessment of research trends on microbial chlorine resistance in drinking water/water treatment systems. J Environ Manage 278: 111641https://doi.org/10.1016/j.jenvman.2020.111641. doi: 10.1016/j.jenvman.2020.111641
    [13] Xu ZS, Yang X, Gänzle MG (2021) Resistance of biofilm- and pellicle-embedded strains of Escherichia coli encoding the transmissible locus of stress tolerance (tLST) to oxidative sanitation chemicals. Int J Food Microbiol 359: 109425https://doi.org/10.1016/j.ijfoodmicro.2021.109425. doi: 10.1016/j.ijfoodmicro.2021.109425
    [14] Rajeev M, Sushmitha TJ, Prasath KG, et al. (2020) Systematic assessment of chlorine tolerance mechanism in a potent biofilm-forming marine bacterium Halomonas boliviensisInt Biodeterior Biodegrad 151: 104967https://doi.org/10.1016/j.ibiod.2020.104967. doi: 10.1016/j.ibiod.2020.104967
    [15] Wang YH, Wu YH, Tong X, et al. (2019) Chlorine disinfection significantly aggravated the biofouling of reverse osmosis membrane used for municipal wastewater reclamation. Water Res 154: 246-257. https://doi.org/10.1016/j.watres.2019.02.008. doi: 10.1016/j.watres.2019.02.008
    [16] Molloy EM, Hertweck C (2017) Antimicrobial discovery inspired by ecological interactions. Curr Opin Microbiol 39: 121-127. https://doi.org/10.1016/j.mib.2017.09.006. doi: 10.1016/j.mib.2017.09.006
    [17] Pishchany G (2020) Applying microbial ecology to antimicrobial discovery. Curr Opin Microbiol 57: 7-12. https://doi.org/10.1016/j.mib.2020.03.007. doi: 10.1016/j.mib.2020.03.007
    [18] Far BE, Ragheb M, Rahbar R, et al. (2021) Cloning and expression of Staphylococcus simulans lysostaphin enzyme gene in Bacillus subtilis WB600. AIMS Microbiol 7: 271-283. https://doi.org/10.3934/microbiol.2021017. doi: 10.3934/microbiol.2021017
    [19] Abdel Fattah R, Fathy F, Mohamed T, et al. (2021) Effect of chitosan nanoparticles on quorum sensing-controlled virulence factors and expression of LasI and RhlI genes among Pseudomonas aeruginosa clinical isolates. AIMS Microbiol 7: 415-430. https://doi.org/10.3934/microbiol.2021025. doi: 10.3934/microbiol.2021025
    [20] Pringgenies D, Setyati WA (2021) Antifungal strains and gene mapping of secondary metabolites in mangrove sediments from Semarang city and Karimunjawa islands, Indonesia. AIMS Microbiol 7: 499-512. https://doi.org/10.3934/microbiol.2021030. doi: 10.3934/microbiol.2021030
    [21] Dal Bello B, Rantsiou K, Bellio A, et al. (2010) Microbial ecology of artisanal products from North West of Italy and antimicrobial activity of the autochthonous populations. LWT 43: 1151-1159. https://doi.org/10.1016/j.lwt.2010.03.008. doi: 10.1016/j.lwt.2010.03.008
    [22] Marsh PD (2010) Controlling the oral biofilm with antimicrobials. J Dent 38: S11-S15. https://doi.org/10.1016/S0300-5712(10)70005-1. doi: 10.1016/S0300-5712(10)70005-1
    [23] Perez F, Pultz MJ, Endimiani A, et al. (2011) Effect of antibiotic treatment on establishment and elimination of intestinal colonization by KPC-producing Klebsiella pneumoniae in mice. Antimicrob Agents Chemother 55: 2585-2589. https://doi.org/10.1128/AAC.00891-10. doi: 10.1128/AAC.00891-10
    [24] Yang JJ, Wang JT, Cheng A, et al. (2018) Impact of broad-spectrum antimicrobial treatment on the ecology of intestinal flora. J Microbiol Immunol Infect 51: 681-687. https://doi.org/10.1016/j.jmii.2016.12.009. doi: 10.1016/j.jmii.2016.12.009
    [25] Griffiths P (2003) The role of Cranberry juice in the treatment of urinary tract infections. Br J Commun Nurs 557-561. https://doi.org/10.12968/bjcn.2003.8.12.11853. doi: 10.12968/bjcn.2003.8.12.11853
    [26] Nowack R, Schmitt W (2008) Cranberry juice for prophylaxis of urinary tract infections–Conclusions from clinical experience and research. Phytomedicine 15: 653-667. https://doi.org/10.1016/j.phymed.2008.07.009. doi: 10.1016/j.phymed.2008.07.009
    [27] Chettaoui R, Mayot G, De Almeida L, et al. (2021) Cranberry (Vaccinium macrocarpon) dietary supplementation and fecal microbiota of Wistar rats. AIMS Microbiol 7: 257-270. https://doi.org/10.3934/microbiol.2021016. doi: 10.3934/microbiol.2021016
  • This article has been cited by:

    1. Michael S. Christodoulou, Federica Villa, Andrea Pinto, Francesca Cappitelli, Correlation between Perturbation of Redox Homeostasis and Antibiofilm Capacity of Phytochemicals at Non-Lethal Concentrations, 2022, 11, 2076-3921, 2451, 10.3390/antiox11122451
    2. Saleh Alkarri, Hawra Bin Saad, Maria Soliman, On Antimicrobial Polymers: Development, Mechanism of Action, International Testing Procedures, and Applications, 2024, 16, 2073-4360, 771, 10.3390/polym16060771
    3. Mrudul Velhal, Mahiman Dave, Earlene Sun, Shubha Holla, Hong Liang, Plant and animal-based bioderived materials: A review of their antimicrobial mechanisms and applications, 2024, 27, 25892347, 100885, 10.1016/j.mtsust.2024.100885
    4. Great Iruoghene Edo, Emad Yousif, Mohammed H. Al-Mashhadani, Modified chitosan: Insight on biomedical and industrial applications, 2024, 275, 01418130, 133526, 10.1016/j.ijbiomac.2024.133526
    5. R. Feyolah Herin, A. S. Shalfia Judit, S. Sebastiammal, S. Shabna, S. Sahaya Jude Dhas, C. S. Biju, Functionalized ZnO NPs and Biopolymers-Coated ZnO NPs for Drug Delivery and Biomedical Applications—A Review, 2024, 2364-4133, 10.1007/s40883-024-00354-0
    6. Hadeer M. Bedair, Mahmoud Hamed, Fotouh R. Mansour, New emerging materials with potential antibacterial activities, 2024, 108, 0175-7598, 10.1007/s00253-024-13337-6
    7. Mengistie Yirsaw Gobezie, Nuhamin Alemayehu Tesfaye, Abebe Getie Faris, Minimize Hassen, Surveillance of antimicrobial utilization in Africa: a systematic review and meta-analysis of prescription rates, indications, and quality of use from point prevalence surveys, 2024, 13, 2047-2994, 10.1186/s13756-024-01462-w
    8. Enas Amdeha, Aesha Abd El Pasir, Diana S. Raie, 2024, Chapter 1, 978-3-031-57842-7, 1, 10.1007/978-3-031-57843-4_1
    9. Mst. Asma Aktar, Md. Shimul Bhuia, Shamim Molla, Raihan Chowdhury, Chandan Sarkar, Md. Al Shahariar, Pias Roy, Željko Reiner, Javad Sharifi-Rad, Daniela Calina, Md. Abdul Kader Shakil, Muhammad Torequl Islam, Pharmacological and phytochemical review of Acmella oleracea: a comprehensive analysis of its therapeutic potential, 2024, 6, 3004-9261, 10.1007/s42452-024-06108-5
    10. Sindhuprava Rana, Vibhor Joshi, Ganesh Chandra Sahoo, Maneesh Kumar, Krishna Pandey, 2024, Chapter 2, 978-981-97-5271-3, 25, 10.1007/978-981-97-5272-0_2
    11. Shijia Li, Weini Li, Naseeb Kaur Malhi, Junwei Huang, Quanqi Li, Ziwei Zhou, Ruiheng Wang, Jiangling Peng, Tong Yin, Honggen Wang, Cannabigerol (CBG): A Comprehensive Review of Its Molecular Mechanisms and Therapeutic Potential, 2024, 29, 1420-3049, 5471, 10.3390/molecules29225471
    12. Abhik Paul, Sai Satyaprakash Mishra, Avik Maji, Ajeya Samanta, Sourin Nahar, Tapan Kumar Maity, Exploring the therapeutic potentials of cuminaldehyde: a comprehensive review of biological activities, mechanisms, and novel delivery systems, 2025, 1568-7767, 10.1007/s11101-025-10069-x
    13. György Schneider, Bettina Schweitzer, Anita S. Steinbach, Ágnes S. Hodován, Marianna Horváth, Eszter Bakó, Anna Mayer, Szilárd Pál, The Therapeutic Potential of West Indian Lemongrass (Cymbopogon citratus) Essential Oil-Based Ointment in the Treatment of Pitted Keratolysis, 2025, 14, 2079-6382, 241, 10.3390/antibiotics14030241
    14. Ma’en Al-Odat, Shadi Mustafa, Yousef Al-Hajaya, Anwar Kandari, Amane Alaroud, Ahmad Alenezi, Haitham Qaralleh, Yasmeen Hazaimeh, Community Pharmacists’ Responses Toward Antimicrobial Prescriptions in Jordan: A Cross-Sectional Survey, 2025, 14, 2079-6382, 300, 10.3390/antibiotics14030300
    15. Mariana Sousa, Idalina Machado, Lúcia C. Simões, Manuel Simões, Biocides as Drivers of Antibiotic Resistance: A Critical Review of Environmental Implications and Public Health Risks, 2025, 26664984, 100557, 10.1016/j.ese.2025.100557
    16. Emna Cherif, Eya Chikhaoui, The drug paracetamol and sodium carboxymethyl cellulose/polyvinyl alcohol composites, interactions for pharmaceutical and biomedical applications, 2025, 0031-9104, 1, 10.1080/00319104.2025.2488044
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4185) PDF downloads(415) Cited by(16)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog