The presence of asymptomatic carriers, often unrecognized as infectious disease vectors, complicates epidemic management, particularly when inter-community migrations are involved. We introduced a SAIR (susceptible-asymptomatic-infected-recovered) infectious disease model within a network framework to explore the dynamics of disease transmission amid asymptomatic carriers. This model facilitated an in-depth analysis of outbreak control strategies in scenarios with active community migrations. Key contributions included determining the basic reproduction number, $ R_0 $, and analyzing two equilibrium states. Local asymptotic stability of the disease-free equilibrium is confirmed through characteristic equation analysis, while its global asymptotic stability is investigated using the decomposition theorem. Additionally, the global stability of the endemic equilibrium is established using the Lyapunov functional theory.
Citation: Xing Zhang, Zhitao Li, Lixin Gao. Stability analysis of a SAIR epidemic model on scale-free community networks[J]. Mathematical Biosciences and Engineering, 2024, 21(3): 4648-4668. doi: 10.3934/mbe.2024204
The presence of asymptomatic carriers, often unrecognized as infectious disease vectors, complicates epidemic management, particularly when inter-community migrations are involved. We introduced a SAIR (susceptible-asymptomatic-infected-recovered) infectious disease model within a network framework to explore the dynamics of disease transmission amid asymptomatic carriers. This model facilitated an in-depth analysis of outbreak control strategies in scenarios with active community migrations. Key contributions included determining the basic reproduction number, $ R_0 $, and analyzing two equilibrium states. Local asymptotic stability of the disease-free equilibrium is confirmed through characteristic equation analysis, while its global asymptotic stability is investigated using the decomposition theorem. Additionally, the global stability of the endemic equilibrium is established using the Lyapunov functional theory.
[1] | W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics—Ⅲ. Further studies of the problem of endemicity, Bull. Math. Biol., 53 (1991), 89–118. |
[2] | H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653. https://doi.org/10.1137/S0036144500371907 doi: 10.1137/S0036144500371907 |
[3] | F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer, 2012. |
[4] | Q. Lin, S. S. Musa, S. Zhao, D. He, Modeling the 2014–2015 Ebola virus disease outbreaks in Sierra Leone, Guinea, and Liberia with effect of high- and low-risk susceptible individuals, Bull. Math. Biol., 82 (2020), 102. https://doi.org/10.1007/s11538-020-00779-y doi: 10.1007/s11538-020-00779-y |
[5] | Z. Yuan, S. S. Musa, S. Hsu, C. M. Cheung, D. He, Post pandemic fatigue: What are effective strategies, Sci. Rep., 12 (2022), 9706. https://doi.org/10.1038/s41598-022-13597-0 doi: 10.1038/s41598-022-13597-0 |
[6] | S. Chen, M. Small, X. Fu, Global stability of epidemic models with imperfect vaccination and quarantine on scale-free networks, IEEE Trans. Network Sci. Eng., 7 (2020), 1583–1596. https://doi.org/10.1109/TNSE.2019.2942163 doi: 10.1109/TNSE.2019.2942163 |
[7] | G. Guan, Z. Guo, Bifurcation and stability of a delayed SIS epidemic model with saturated incidence and treatment rates in heterogeneous networks, Appl. Math. Modell., 101 (2022), 55–75. https://doi.org/10.1016/j.apm.2021.08.024 doi: 10.1016/j.apm.2021.08.024 |
[8] | R. Zhao, Q. Liu, M. Sun, Dynamical behavior of a stochastic SIQS epidemic model on scale-free networks, J. Appl. Math. Comput., 68 (2022), 813–838. https://doi.org/10.1007/s12190-021-01550-9 doi: 10.1007/s12190-021-01550-9 |
[9] | Z. Xu, K. Li, M. Sun, X. Xu, Interaction between epidemic spread and collective behavior in scale-free networks with community structure, J. Theor. Biol., 462 (2019), 122–133. https://doi.org/10.1016/j.jtbi.2018.11.003 doi: 10.1016/j.jtbi.2018.11.003 |
[10] | Y. Feld, A. K. Hartmann, Large-deviations of the SIR model around the epidemic threshold, preprint, arXiv: 2109.08543v2. |
[11] | A. Dimou, M. Maragakis, P. Argyrakis, A network SIRX model for the spreading of COVID-19, Physica A, 590 (2022), 126746. https://doi.org/10.1016/j.physa.2021.126746 doi: 10.1016/j.physa.2021.126746 |
[12] | A. M. del Rey, R. C. Vara, S. R. González, A computational propagation model for malware based on the SIR classic model, Neuracomputing, 484 (2022), 161–171. https://doi.org/10.1016/j.neucom.2021.08.149 doi: 10.1016/j.neucom.2021.08.149 |
[13] | A. Rizzo, B. Pedalino, M. Porfiri, A network model for Ebola spreading, J. Theor. Biol., 394 (2016), 212–222. https://doi.org/10.1016/j.jtbi.2016.01.015 doi: 10.1016/j.jtbi.2016.01.015 |
[14] | Q. Yin, Z. Wang, C. Xia, C. T. Bauch, Impact of co-evolution of negative vaccine-related information, vaccination behavior and epidemic spreading in multilayer networks, Commun. Nonlinear Sci. Numer. Simul., 109 (2022), 106312. https://doi.org/10.1016/j.cnsns.2022.106312 doi: 10.1016/j.cnsns.2022.106312 |
[15] | Y. Xue, X. Yuan, M. Liu, Global stability of a multi-group SEI model, Appl. Math. Comput., 226 (2014), 51–60. https://doi.org/10.1016/j.amc.2013.09.050 doi: 10.1016/j.amc.2013.09.050 |
[16] | S. Ottaviano, M. Sensi, S. Sottile, Global stability of SAIRS epidemic models, Nonlinear Anal. Real World Appl., 65 (2022), 103501. https://doi.org/10.1016/j.nonrwa.2021.103501 doi: 10.1016/j.nonrwa.2021.103501 |
[17] | A. Rahman, A. Peace, R. Kesawan, S. Ghosh, Spatio-temporal models of infectious disease with high rates of asymptomatic transmission, preprint, arXiv: 2207.09671. |
[18] | G. Dimarco, B. Perthame, G. Toscani, M. Zanella, Kinetic models for epidemic dynamics with social heterogeneity, J. Math. Biol., 83 (2021), 4. https://doi.org/10.1007/s00285-021-01630-1 doi: 10.1007/s00285-021-01630-1 |
[19] | X. Liu, K. Zhao, J. Wang, H. Chen, Stability analysis of a SEIQRS epidemic model on the finite scale-free network, Fractals, 30 (2022), 2240054. https://doi.org/10.1142/S0218348X22400540 doi: 10.1142/S0218348X22400540 |
[20] | T. Das, S. R. Bandekar, A. K. Srivastav, P. K. Srivastava, M. Ghosh, Role of immigration and emigration on the spread of COVID-19 in a multipatch environment: A case study of India, Sci. Rep., 13 (2023), 10546. https://doi.org/10.1038/s41598-023-37192-z doi: 10.1038/s41598-023-37192-z |
[21] | C. Buckee, A. Noor, L. Sattenspiel, Thinking clearly about social aspects of infectious disease transmission, Nature, 595 (2021), 205–213. https://doi.org/10.1038/s41586-021-03694-x doi: 10.1038/s41586-021-03694-x |
[22] | V. Colizzaand, A. Vespignani, Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations, J. Theor. Biol., 251 (2008), 450–467. https://doi.org/10.1016/j.jtbi.2007.11.028 doi: 10.1016/j.jtbi.2007.11.028 |
[23] | N. N. Wang, Y. J. Wang, S. H. Qiu, Z. R. Di, Epidemic spreading with migration in networked meta population, Commun. Nonlinear Sci. Numer. Simul., 109 (2022), 106260. https://doi.org/10.1016/j.cnsns.2022.106260 doi: 10.1016/j.cnsns.2022.106260 |
[24] | A. R. S. Castañeda, E. E. Ramirez-Torres, L. E. Valdés-García, H. M. Morandeira-Padrón, D. S. Yanez, J. I. Montijano, et al., Model for prognostic of symptomatic, asymptomatic and hospitalized COVID-19 cases with correct demography evolution, preprint, arXiv: 2206.03806v1. |
[25] | C. J. Silva, G. Cantin, C. Cruz, R. Fonseca-Pinto, R. Passadouro, E. S. dos Santos, et al., Complex network model for COVID-19: Human behavior, pseudo-periodic solutions and multiple epidemic waves, J. Math. Anal. Appl., 514 (2022), 125171. https://doi.org/10.1016/j.jmaa.2021.125171 doi: 10.1016/j.jmaa.2021.125171 |
[26] | M. Chapwanya, J. Lubuma, Y. Terefe, B. Tsanou, Analysis of war and conflict effect on the transmission dynamics of the tenth Ebola outbreak in the Democratic Republic of Congo, Bull. Math. Biol., 84 (2022), 136. https://doi.org/10.1007/s11538-022-01094-4 doi: 10.1007/s11538-022-01094-4 |
[27] | C. Castillo-Chavez, Z. Feng, W. Huang, On the computation of R0 and its role on global stability, Math. Approaches Emerging Re-emerging Infect. Dis. Introd., 125 (2002), 229–250. |
[28] | L. Muchnik, S. Pei, L. C. Parra, S. D. S. Reis, J. S. A. Jr, S. Havlin, et al., Origins of power-law degree distribution in the heterogeneity of human activity in social networks, Sci. Rep., 3 (2013), 1783. https://doi.org/10.1038/srep01783 doi: 10.1038/srep01783 |
[29] | M. Zanella, C. Bardelli, G. Dimarco, S. Deandrea, P. Perotti, M. Azzi, et al., A data-driven epidemic model with social structure for understanding the COVID-19 infection on a heavily affected Italian province, Math. Models Methods Appl. Sci., 31 (2021), 2533–2570. https://doi.org/10.1142/S021820252150055X doi: 10.1142/S021820252150055X |
[30] | G. Dimarco, G. Toscani, M. Zanella, Optimal control of epidemic spreading in the presence of social heterogeneity, Phil. Trans. R. Soc. A, 380 (2022), 20210160. https://doi.org/10.1098/rsta.2021.0160 doi: 10.1098/rsta.2021.0160 |
[31] | G. Béraud, S. Kazmercziak, P. Beutels, D. Levy-Bruhl, X. Lenne, N. Mielcarek, et al., The French connection: The first large population-based contact survey in France relevant for the spread of infectious diseases, PLoS One, 10 (2015), e0133203. https://doi.org/10.1371/journal.pone.0133203 doi: 10.1371/journal.pone.0133203 |
[32] | O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324 |
[33] | R. M. Anderson, R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford university press, 1991. https://doi.org/10.1017/s0950268800059896 |
[34] | H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653. https://doi.org/10.1137/S0036144500371907 doi: 10.1137/S0036144500371907 |
[35] | P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6 |