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Abstract: The presence of asymptomatic carriers, often unrecognized as infectious disease vectors,
complicates epidemic management, particularly when inter-community migrations are involved. We
introduced a SAIR (susceptible-asymptomatic-infected-recovered) infectious disease model within a
network framework to explore the dynamics of disease transmission amid asymptomatic carriers.
This model facilitated an in-depth analysis of outbreak control strategies in scenarios with active
community migrations. Key contributions included determining the basic reproduction number, R0,
and analyzing two equilibrium states. Local asymptotic stability of the disease-free equilibrium is
confirmed through characteristic equation analysis, while its global asymptotic stability is investigated
using the decomposition theorem. Additionally, the global stability of the endemic equilibrium is
established using the Lyapunov functional theory.
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1. Introduction

With the global population continuously increasing and people’s social networks expanding, the
study of disease transmission has gained increasing importance. Taking COVID-19 as an example, it
is evident that formulating appropriate control strategies based on the epidemic’s characteristics can
optimize the utilization of social resources, minimize economic losses, and reduce human casualties.
In recent years, there have been significant advancements in the field of infectious disease dynamics,
which have provided valuable guidance for disease transmission control and treatment. Mathematical
models play a crucial role in infectious disease dynamics research by elucidating the key
characteristics of diseases through assumptions, parameters, variables, and their interrelationships.
Through the application of dynamic methods, mathematical models can be developed to investigate
whether a specific infectious disease will continue to spread and become endemic in a particular
region, or if it will eventually be eradicated.
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In the realm of infectious disease modeling, compartmental models are prevalently utilized for
analyzing disease spread. These models postulate that populations are divisible into homogeneous
subgroups or compartments, within which individuals are indistinguishable. Parameters may vary
among compartments but are constant within each one. Foundational compartmental models, such as
the susceptible-infected-susceptible (SIS) and susceptible-infected-recovered (SIR) models proposed
by Kermack and McKendrick [1], along with the concept of epidemic thresholds, have established a
rigorous mathematical framework for the study of disease spread and the evaluation of control
strategies. Progress in research has led to the introduction of additional compartments and the
development of more realistic models [2–5].

The interaction between different types of networks and the dynamics of disease transmission
primarily concerns how various social network structures influence the spread of diseases. For
instance, scale-free networks, characterized by a few highly connected nodes, may facilitate rapid
disease propagation across a large population [6–9], while small-world networks, known for short
average path lengths and strong social connections, might accelerate disease spread within
closely-knit groups [10–13]. These network characteristics are crucial for understanding and
predicting how infectious diseases spread through populations and for formulating effective control
strategies. Beyond the previously discussed models, there are also epidemic models specifically
designed for overlapping community networks, as described in [14, 15]. Hence, disease models need
to consider these network properties to more accurately predict and address disease transmission.

Several studies indicate that asymptomatic carriers may exhibit higher transmissibility compared
to symptomatic individuals. This is attributed to asymptomatic individuals often not experiencing
noticeable illness, thus possibly not undertaking necessary isolation and prevention measures. To
enhance our understanding of the impact of asymptomatic carriers on disease transmission, researchers
have proposed refined models, including the extensively studied SEIR model, which encompasses four
states: susceptible, exposed, infectious, and recovered [16, 17]. These studies highlight the significant
role of asymptomatic individuals in the dynamics of disease transmission, suggesting a need for cost-
effective detection methods, such as nucleic acid testing, to inform disease control strategies. The
role of asymptomatic spreaders may correlate with their social contact patterns, with skewed degree
distributions indicating that some individuals, like asymptomatic carriers, have higher connectivity in
social networks, potentially playing a more significant role in disease spread [18, 19].

Individual migration refers to the movement of individuals from one node to another within a
network, thereby facilitating the spread of diseases across regions or communities. Such migration
can be motivated by various factors, including employment, travel, or other socio-economic
considerations. Incorporating individual migration in infectious disease models is crucial, as it allows
diseases to traverse broader geographical or social boundaries, impacting the epidemiological
dynamics across the entire network [20]. Studies, such as [21], have shown that high mobility
between areas with differing infection rates significantly impacts the spread of diseases like
COVID-19. Current research suggests the implementation of appropriate travel restrictions to help
control the spread of diseases from high to low prevalence areas [22, 23]. Additionally, the influence
of migration on disease replication and diffusion, as well as the unequal migration rates among
different populations, which can substantially affect the effectiveness of control strategies, are
important considerations [24].

In numerous diseases like COVID-19, asymptomatic carriers exist. While symptomatic individuals
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can be isolated during epidemic management, asymptomatic carriers might spread the virus when
moving to other communities. To understand their impact on disease transmission, a numerical
analysis of a complex network infectious disease model across six regions was conducted, based
on [25]. The study examines if a topological structure exists that minimizes active infections over
time. We extend this model to a more general complex network model, incorporating asymptomatic
transmission and migration features. By integrating graph theory and stability analysis, the
equilibrium and stability of the nonlinear system are theoretically proven, laying a solid foundation
for effective epidemic management strategies. For example, this research can inform decisions on
whether it is necessary to invest a significant amount of time or resources in nucleic acid testing, by
considering other studies or real-world conditions.

The key contributions of this research are threefold. First, we extend the existing model of [25] to
complex networks, specifically scale-free networks, enabling a more realistic representation of disease
dynamics in interconnected populations with varying degrees of connectivity. Second, we explore
the stability of the nonlinear system model with asymptomatic infections on a scale-free network,
substantiating the findings through rigorous theoretical proofs and simulations. Last, we investigate the
dynamic behaviors of diseases in the presence of migration and assess the specific impact of unequal
migration rates between different populations on disease spread.

We specifically examine the SAIR infectious disease model within a scale-free network
characterized by degree correlations. We aim to explore effective strategies for controlling disease
outbreaks within communities that experience migration between them. The threshold R0, which
represents the level of disease transmissibility, is determined by employing the next-generation
matrix. Moreover, the global asymptotic stability of both the disease-free equilibrium and the
endemic equilibrium is demonstrated through the application of the decomposition theorem [26] and
the development of Lyapunov functions.

This paper is organized as follows. In Section 2, we propose an SAIR infectious disease dynamic
model based on an uncorrelated network. In Section 3, we prove the existence of two equilibria of the
model and calculate the basic reproduction number R0 using the next-generation matrix method. In
Section 4, we use the decomposition theorem and construct Lyapunov functions to prove the global
asymptotic stability of both the disease-free equilibrium and the endemic equilibrium of the system. In
Section 5, we conduct numerical simulations in MATLAB to validate the theoretical results. The paper
concludes in Section 6, providing some conclusions and suggestions for future work.

2. Establishment of a SAIR network disease model

Individual migration refers to the movement of individuals from one node of the network to
another, thereby facilitating the spread of diseases from one region or community to another. This
type of migration can be driven by various reasons, such as employment, travel, or other
socio-economic factors. In models of infectious diseases, considering individual migration is crucial
as it enables diseases to transcend broader geographical or social boundaries, thereby influencing the
epidemic dynamics across the entire network [20]. We employ network topology to represent the
migration between individuals, assuming that within the same community, i.e., each node on the
network, the total influx of different population groups, such as susceptible individuals, equals the
total outflux. Infected individuals are either consciously or forcibly restricting their movements, so
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there is no community migration of groups with symptomatic infections.
In the real world, social networks often exhibit the characteristics of scale-free networks, with a

power-law degree distribution as their primary feature. As demonstrated in the literature [27], this
common structure of social networks not only possesses the characteristic of a power-law distribution
but also exhibits a dual nature of robustness and vulnerability. Furthermore, in the literature [28], an
analysis of the distribution of user activities on different social media platforms reveals a similar
adherence to a power-law distribution. Building upon this, We focus on the issue of epidemic spread
on scale-free networks. Specifically, we extend the model proposed in the literature [25] to form
model (2.1). In this model, individuals within the same node are considered to have identical
characteristics, i.e., the same parameter values. Individuals within each node undergo different forms
of infection processes and spread between nodes through migration at a constant rate.

Thus, this article constructs a SAIR model to describe the spread of disease within a network.

Ṡ k(t) = Λ − βk (θkAk(t) + Ik(t)) S k(t) − µS k(t) − σS S k(t) + σS k
n∑

i=1

p(i|k)
i S i(t),

Ȧk(t) = βk (θkAk(t) + Ik(t)) S k(t) − vkAk(t) − µAk(t) − σAAk(t) + σAk
n∑

i=1

p(i|k)
i Ai(t),

İk(t) = vkAk(t) − δkIk(t) − µIk(t),

Ṙk(t) = δkIk(t) − µRk(t) − σRRk(t) + σRk
n∑

i=1

p(i|k)
i Ri(t).

(2.1)

In the epidemic network we consider, each node can be in one of four different states at any time:
susceptible (S ), asymptomatic infected (A), symptomatic infected (I), or recovered (R). Susceptible
individuals (S ) can become infected by contacting symptomatic infected individuals (I) and
asymptomatic infected individuals (A), with an infection rate of β(θA + I), where θ represents the
transmission modifying parameter for asymptomatic infected individuals (A). Only a small fraction of
asymptomatic infected individuals (A) with symptoms transition to symptomatic infected individuals
(I) at a rate of ν, and symptomatic infected individuals (I) recover/are removed at a rate of δ. σS , σA,
and σR represent the migration rates of susceptible individuals (S ), asymptomatic infected individuals
(A), and recovered individuals (R) among different communities, respectively. The constant
parameters Λ and µ represent the birth rate and natural death rate of individuals, respectively.

Due to the complexity of network structures, this article divides the nodes in the network into n
classes according to their degrees, where n is the maximum degree of the network. In other words, if
the degrees of nodes i and j are both k, then they belong to the kth class, where k ∈ 1, 2, · · · , n. The
state variables S k(t), Ak(t), Ik(t), and Rk(t) represent the relative density of susceptible, asymptomatic,
symptomatic, and recovered nodes with degree k. The expression p(i|k) is the probability that a node
with degree k is connected to a node with degree i. In an uncorrelated network, it is expressed as
p(i|k) = i

⟨k⟩ which is considered independent of the connectivity of the node that sends out the link,
where ⟨k⟩ represents the average degree of the network.

Remark 1. Symptomatic individuals, whether voluntarily or due to enforced restrictions, tend to
restrict their activities. Consequently, there is no migration of symptomatic infection groups between
communities, and migration is virtually non-existent. The social contact matrix is represented as 0. In
contrast, asymptomatic individuals are those who have been infected with pathogens, such as viruses
or bacteria, without exhibiting typical disease symptoms like fever, cough, or headache. Their clinical
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characteristics closely resemble those of susceptible and recovered individuals. Drawing inspiration
from references [29, 30], we can express the social contact matrix between asymptomatic individuals,
susceptible individuals, and recovered individuals as A ji =

k jki

N⟨k⟩ (i, j = 1, 2, · · · , n), where each
element represents the probability of contact between individuals at node i and node j. Here, ki and k j

represent the degrees of node i and node j, respectively. From a mean-field perspective, in the context
of scale-free networks, the term for inter-community migration can be observed as the final
component of model (2.1). However, as asymptomatic individuals also carry the pathogen, they
possess the potential to transmit the disease, akin to symptomatic individuals, through contact. The
transmission probability can be represented as βkθkAkS k, where θk is a corrective parameter
distinguishing it from the infection rate of symptomatic individuals. Additionally, we intend to
consider adjusting parameters such as v in the future using control measures like nucleic acid testing
to enhance epidemic management. Consequently, research on asymptomatic individuals carries
significant importance. It is important to note that, for the sake of research convenience, this paper
has not yet factored in the difference in recovery rates between asymptomatic and symptomatic
individuals. Nonetheless, a more precise clinical characterization will become a crucial avenue for
future research.

Remark 2. The model presented in this article (model (2.1)) has several limitations. First, although
in theory, social networks can be considered scale-free networks, exhibiting power-law
characteristics, many field experiments suggest that real contact networks do not follow a power-law
distribution [31]. Nevertheless, scale-free networks, as a theoretical model, can effectively capture
and reflect key features of real networks, such as the high concentration of connections in certain
nodes. This simplification makes mathematical and computational analyses feasible, providing
valuable insights for a deeper understanding of network dynamics. Second, to maintain the simplicity
and ease of analysis, and since the focus of the study is on understanding long-term immune
dynamics, this article omits the exposure stage by choosing to exclude the exposed category (E). It is
undeniable that the exposed category (E) is crucial for the spread of the disease, and this omission
represents a limitation of the model presented in this article.

3. Boundedness of solutions and basic reproduction number

Based on Theorem 6 in the literature [26], it can be observed that the solution to model (2.1) exhibits
existential uniqueness for a given initial value. Below, we present two distinct solutions to the model.

The disease-free equilibrium and endemic equilibrium are determined by solving Eq (2.1) with the
right-hand side set to 0:

Λ − βk (θkAk(t) + Ik(t)) S k(t) − µS k(t) − σS S k(t) + σS
k
⟨k⟩

n∑
i=1

p(i)S i(t) = 0,

βk (θkAk(t) + Ik(t)) S k(t) − vkAk(t) − µAk(t) − σAAk(t) + σA
k
⟨k⟩

n∑
i=1

p(i)Ai(t) = 0,

vkAk(t) − δkIk(t) − µIk(t) = 0,

δkIk(t) − µRk(t) − σRRk + σR(t)
k
⟨k⟩

n∑
i=1

p(i)Ri(t) = 0.

(3.1)
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Clearly, model (2.1) possesses a disease-free equilibrium:

E0
k = (S 0

k , A
0
k , I

0
k ,R

0
k) = (

Λ

µ + σS
+

σS

µ + σS

k
< k >

Λ

µ
, 0, 0, 0).

To determine the endemic equilibrium, we initially manipulate Eq (3.1) to acquire:

A+k =
δk+µ

νk
I+k ,

S +k =
1

µ+σs

[
Λ + σs

k
<k>S + + σA

k
<k>A+ − (νk + µ + σA)A+k

]
,

R+k =
1

µ+σR

(
δkI+k + σR

k
<k>R+

)
.

In this context, S +, A+, and R+ represent the total number (density) of susceptible individuals,
asymptomatic infected individuals, and recovered individuals in each community, respectively. In

other words, S + =
n∑

i=1
p(i)S +i (t), A+ =

n∑
i=1

p(i)A+i (t), and R+ =
n∑

i=1
p(i)R+i (t). By substituting the above

equation into the first equation of Eq (3.1), we obtain
(
A+k

)2
+ bA+k + c = 0, where

b = −
(
Λ + σs

k
<k>S + + σA

k
<k>A+

)
µ+σs

νk+µ+σA
+

(µ+σs)(δk+µ)
βkθk(δk+µ)+βkνk

, c = − µ+σs
νk+µ+σA

δk+µ

βkθk(δk+µ)+βkνk
σA

k
<k>A+.

Therefore, we find that A+k =
−b+
√

b2−4c
2 > 0. Next, we will demonstrate the positive definiteness

of the local disease equilibrium.

Theorem 1. LetD =
{
(S 1, A1, I1,R1, . . . , S n, An, In,Rn) ∈ R4n

+ , Nk(t) = S k + Ak + Ik + Rk ≤
Λ
µ

}
. The set

D is positively invariant for model (2.1).

Proof. First, we illustrate the solution is positive. According to A+k > 0, and A+k =
(δk+µ)
νk

I+k , we know
that I+k > 0. By weighting and summing the fourth equation of (3.1), we have

n∑
k=1

p(k)δkI+k (t) − µ
n∑

k=1
p(k)R+k (t) = 0, thus R+ > 0 and consequently, R+k > 0. By weighting and

summing the second equation of (3.1), we have
n∑

k=1
p(k)βk(θkA+k (t) + I+k (t))S +k (t) −

n∑
k=1

p(k)vkA+k (t) − µ
n∑

k=1
p(k)A+k (t) = 0. It is obvious that

n∑
k=1
βk(θkA+k (t) + I+k (t))

n∑
k=1

p(k)S +k (t) ≥
n∑

k=1
p(k)βk(θkA+k (t) + I+k (t))S +k (t) > 0, which indicates that S + > 0.

Assuming that S +k < 0, then ∀t, Ṡ k > 0, which is a contradiction. Therefore, S +k > 0. Next, we
illustrate the boundedness of the solution. The total population of each node is defined by
Nk(t) = S k(t) + Ak(t) + Ik(t) + Rk(t), which satisfies Ṅk(t) = −µNk(t) + Λ. Obviously, we can get
Nk(t) =

[
Nk(0) − Λ

µ

]
e−µt + Λ

µ
. So, we can get that t ≥ 0,Nk(t) = S k + Ak + Ik + Rk ≤

Λ
µ

.

The basic reproduction number, denoted as R0, plays a pivotal role in epidemiology. It represents
the average number of people an infected individual can transmit the disease to in the absence of any
intervention measures. The computation of R0 varies depending on the mode of disease transmission
and the epidemiological model employed. Common methodologies include the next-generation matrix,
epidemiological parameter estimation, branching process models, and dynamical systems analysis.
The most frequently used method, particularly applicable to the compartmental models discussed in
this article, is the next-generation matrix [32–35]. This approach primarily involves calculating the
average number of secondary infections generated by an infective individual over the course of their
infectious period. It typically requires the computation of the average expected matrix of disease
transmission, followed by determining its largest eigenvalue.
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According to the method of the second moment matrix, we can initially classify the districts into
diseased districts F(x) and non-diseased districts V(x), as given by:

F(x) =

 βk(θkAk(t) + Ik(t))S k(t) + σA
k

<k>

n∑
i=1

p(i)Ai(t)

0

 ; V(x) =
(
νkAk(t) + µAk(t) + σAAk(t)
−νkAk(t) + δkIk(t) + µIk(t)

)
.

Hence, the basic reproduction number R0 corresponds to the largest spectral radius of the matrix FV−1.
In this context, F and V represent the Jacobian matrices of F(x) and V(x) evaluated at E0, respectively.
The matrix FV−1 is defined as:

FV−1 = diag
(

βkθkS 0
k

νk + µ + σA
+

βkS 0
kνk

(δk + µ) (νk + µ + σA)

)
+ Kdiag

(
σA

νk + µ + σA

)
, (3.2)

where,

K =


p(1)
⟨k⟩

p(2)
⟨k⟩ · · ·

p(n)
⟨k⟩

2p(1)
⟨k⟩

2p(2)
⟨k⟩ · · ·

2p(n)
⟨k⟩

...
...

. . .
...

np(1)
⟨k⟩

np(2)
⟨k⟩ · · ·

np(n)
⟨k⟩

 .
From the above formulas, we can obtain:

1) When all parameters are the same for each community,

R0 ≤
σS kmax

⟨k⟩
βθΛ (δ + µ) + βΛν

(ν + µ + σA)(µ + σS ) (δ + µ) µ
+

βθΛ (δ + µ) + βΛν
(ν + µ + σA)(µ + σS ) (δ + µ)

+
σA

ν + µ + σA
,

in a finite-scale-free network with N nodes, initial node degree m0, and adding m links at each time,
the degree distribution follows p(k) = (γ1−1)mγ1−1k−γ1 . Then, ⟨k⟩ ≃ 2m, kmax ≃ mN1/2, R0 < 1, and
√

N < 2(ν+µ)(µ+σS )(δ+µ)µ−2[βθΛ(δ+µ)+βΛν]µ
[βθΛ(δ+µ)+βΛν]σS

are equivalent;

2) When the parameters in different communities are not exactly the same,

R0 = ρ
(
FV−1

)
≤ max

(
βkθkS 0

k

νk + µ + σA
+

βkS 0
kνk

(δk + µ) (νk + µ + σA)

)
+max

(
σA

νk + µ + σA

)
.

The basic reproduction number R0 is a critical metric in epidemiology, commonly used to assess
the potential for the spread of infectious diseases. In epidemiology, R0 is often compared to 1 to
determine the trend of disease transmission: When R0 > 1, it signifies that, on average, each infected
individual can transmit the disease to more than one person. In such cases, it is expected that the disease
will spread in the population and may lead to an epidemic. When R0 = 1, each infected individual, on
average, transmits the disease to only one other person, and the spread of the disease remains stable
without expansion or reduction. When R0 < 1, each infected individual, on average, transmits the
disease to fewer than one person, indicating that the disease spread will gradually decline and may
eventually disappear. Therefore, control measures and preventive strategies are typically designed to
reduce R0 to below 1, slowing down the spread of the disease and gaining control over the outbreak.
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In situations where the network topology is uncertain, meaning the corresponding adjacency
matrix is uncertain, the precise computation of the value of R0 becomes challenging. In such cases,
establishing an upper bound for R0 is both important and meaningful. Determining an upper bound
for R0 helps us assess the potential risk of disease spread in the worst-case scenario and provides a
safe threshold for epidemic control strategies. Even when the precise calculation of R0 is not feasible,
analyzing factors that may influence the upper bound of R0 still offers valuable insights into effective
epidemic control strategies.

4. Local stability and global stability of equilibria

In the context of metapopulation network models for infectious diseases, this study distinguishes
between two distinct scenarios: the homogeneous case, where all communities share identical
parameters, and the heterogeneous case, where parameters vary among different communities. The
formulation of the upper bound for the basic reproduction number, R0, differs under these two
circumstances. It’s worth noting that the homogeneous scenario essentially serves as a specific
instance of the more general heterogeneous case.The analysis within this article primarily focuses on
the latter, more complex scenario of heterogeneous community parameters. This approach inherently
encompasses the homogeneous case, providing a comprehensive framework applicable to both
specific and varied settings. Furthermore, the core of this manuscript revolves around the stability
analysis of the model. It posits that if the conclusions derived for the general case (heterogeneous
parameters) hold true, they will invariably apply to the special case (homogeneous parameters) as
well. This methodology ensures the analysis’s robustness and wide applicability, catering to a diverse
range of epidemiological scenarios encountered in real-world situations.

In the following section, we will address the local stability and global stability of equilibrium
points for the model under general conditions (heterogeneous parameters). The stability conclusions
derived are equally applicable to the special case (homogeneous parameters). First, let’s analyze the
local asymptotic stability of the disease-free equilibrium point in the system.

Theorem 2. If R0 < 1, then the disease free equilibrium E0 is locally asymptotically stable. If R0 > 1,
the disease free equilibrium E0 is unstable.

Proof. The Jacobian matrix of system (2.1) at the disease-free equilibrium E0 is:

M =


−B + σS (K − E) −C −D 0

0 C − F − B + σA(K − E) D 0
0 F −B −G 0
0 0 G −B + σR(K − E)

 ,
where, B = diag(µ),C = diag(βkθkS 0

k),D = diag(βkS 0
k), F = diag(νk),G = diag(δk), because,

ρ (σS (K − E) − B) < ρ (−σS E − B) + ρ (σS K) = max(−µ) < 0,
ρ (σR(K − E) − B) < ρ (−σRE − B) + ρ (σRK) = max(−µ) < 0,

and [
C − F − B + σA(K − E) D

F −B −G

]
,
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make a line change,we can get[
C − F − B + σA(K − E) + DF(B +G) 0

F −B −G

]
.

Obviously,

ρ (−B −G) = max(−µ − δk) < 0;
ρ (C − F − B + σA(K − E) + DF(B +G))

= ρ
(
diag (νk + µ + σA) diag

(
βkS 0

kνk

(δk+µ)(νk+µ+σA) +
βkθkS 0

k−νk−µ−σA

νk+µ+σA
+ σAK

νk+µ+σA
− 1

))
≤ ρ (diag (νk + µ + σA)) ρ

(
diag

(
βkS 0

kνk

(δk+µ)(νk+µ+σA) +
βkθkS 0

k−νk−µ−σA

νk+µ+σA
+ σAK

νk+µ+σA
− 1

))
= ρ (diag (νk + µ + σA)) (R0 − 1) < 0.

The eigenvalues of M are in the left half open plane of the complex plane,so the disease free
equilibrium E0 is locally asymptotically stable.

Theorem 3. If R0 < 1, then the disease free equilibrium E0 is globally asymptotically stable. If R0 > 1,
the disease free equilibrium E0 is unstable.

Proof. We utilize an approach from page 4 of Castillo-Chavez et al. (2002) [27] to establish the global
stability of the disease-free equilibrium within the system. Within the framework of this theorem, we
rewrite system (2.1) as:

dX
dt
= F(X,Y),

dY
dt
= G(X,Y), with G(X, 0) = 0,

here, X = (S 1, S 2, · · · , S n,R1,R2, · · · ,Rn) ∈ R2n
+ and Y = (A1, A2, · · · , An, I1, I2, · · · , In) ∈ R2n

+ denote
the dependent variables of uninfected and infected individuals, respectively. The right-hand sides, i.e.,
F(X,Y) and G(X,Y) are, respectively,

Λ − β1(θ1A1 + I1)S 1 − µS 1 − σsS 1 + σs
1
<k>

n∑
i=1

p(i)S i

Λ − β2(θ2A2 + I2)S 2 − µS 2 − σsS 2 + σs
2
<k>

n∑
i=1

p(i)S i

...

Λ − βn(θnAn + In)S n − µS n − σsS n + σs
n
<k>

n∑
i=1

p(i)S i

δ1I1 − µR1 − σRR1 + σR
1
<k>

n∑
i=1

p(i)Ri

δ2I2 − µR2 − σRR2 + σR
2
<k>

n∑
i=1

p(i)Ri

...

δnIn − µRn − σRRn + σR
n
<k>

n∑
i=1

p(i)Ri



;



β1(θ1A1 + I1)S 1 − ν1A1 − µA1 − σAA1 + σA
1
<k>

n∑
i=1

p(i)Ai

β2(θ2A2 + I2)S 2 − ν2A2 − µA2 − σAA2 + σA
2
<k>

n∑
i=1

p(i)Ai

...

βn(θnAn + In)S n − νnAn − µAn − σAAn + σA
n
<k>

n∑
i=1

p(i)Ai

ν1A1 − δ1I1 − µI1

ν2A2 − δ2I2 − µI2
...

νnAn − δnIn − µIn



.

According to the approach in [27], the disease-free equilibrium in this context can be expressed as:

E0
k = (X∗, 0) = (

Λ

µ + σS
+

σS

µ + σS

1
< k >

Λ

µ
, · · · ,

Λ

µ + σS
+

σS

µ + σS

n
< k >

Λ

µ
, 0, · · · , 0, 0, · · · , 0, 0, · · · , 0),
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is globally asymptotically stable for R0 < 1 as long as the following conditions are met for (X, Y). In
the first step, we understand that for the sub-system:

dX
dt
= F(X, 0) =



Λ − µS 1 − σsS 1 + σs
1
<k>

n∑
i=1

p(i)S i

Λ − µS 2 − σsS 2 + σs
2
<k>

n∑
i=1

p(i)S i

...

Λ − µS n − σsS n + σs
n
<k>

n∑
i=1

p(i)S i

−µR1 − σRR1 + σR
1
<k>

n∑
i=1

p(i)Ri

−µR2 − σRR2 + σR
2
<k>

n∑
i=1

p(i)Ri

...

−µRn − σRRn + σR
n
<k>

n∑
i=1

p(i)Ri



,

the equilibrium, X∗ = ( Λ
µ+σS
+ σS

µ+σS

1
<k>

Λ
µ
, · · · , Λ

µ+σS
+ σS

µ+σS

n
<k>

Λ
µ
, 0, · · · , 0), is globally asymptotically

stable, which is a decoupled linear system.
Second, we observe that the Jacobian matrix given by

A|E0 =

[
A11 A12

A21 A22

]
,

is clearly an Metzler-matrix. Here,

A11 =


β1θ1 − ν1 − µ − σA + σA

1p(1)
<k> σA

1p(2)
<k> · · · σA

1p(n)
<k> ,

σA
2p(1)
<k> β2θ2 − ν − µ2 − σA + σA

2p(2)
<k> · · · σA

2p(n)
<k>

...
...

. . .
...

σA
np(1)
<k> σA

np(2)
<k> · · · βnθn − νn − µ − σA + σA

np(n)
<k>

,

A12 =


β1 0 · · · 0
0 β2 · · · 0
...

...
. . .

...

0 0 · · · βn

 , A21 =


ν1 0 · · · 0
0 ν2 · · · 0
...

...
. . .

...

0 0 · · · νn

 , A22 =


−δ1 − µ1 0 · · · 0

0 −δ2 − µ2 · · · 0
...

...
. . .

...

0 0 · · · −δn − µn

 .

Then, we can get
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G̃(X,Y) = AY −G(X,Y)

= A



A1

A2
...

An

I1

I2
...

In


−



β1(θ1A1 + I1)S 1 − ν1A1 − µA1 − σAA1 + σA
1
<k>

n∑
i=1

Ai

β2(θ2A2 + I2)S 2 − ν2A2 − µA2 − σAA2 + σA
2
<k>

n∑
i=1

Ai

...

βn(θnAn + In)S n − νnAn − µAn − σAAn + σA
n
<k>

n∑
i=1

Ai

ν1A1 − δ1I1 − µI1

ν2A2 − δ2I2 − µI2
...

νnAn − δnIn − µIn



=



β1(1 − S 1)(θ1A1 + I1)
β2(1 − S 2)(θ2A2 + I2)

...

βn(1 − S n)(θnAn + In)
0
0
...

0


≥ 0.

Utilizing the approach found on page 4 of [27], we can establish that the disease-free equilibrium
E0 is globally asymptotically stable.

Theorem 4. In positive invariant D, the endemic equilibrium E+ of system is globally asymptotically
stable, if R0 ≥ 1.

Proof. Consider the Lyapunov function:

Vk = c1

(
S k − S +k − S +k ln

S k

S +k

)
+ c2

(
Ak − A+k − A+k ln

Ak

A+k

)
+ c3

(
Ik − I+k − I+k ln

Ik

I+k

)
,

with the positive coefficients c1, c2, c3 satisfy c1 = c2 = 1, c3νkA+k = c1βkS +k I+k .
As constructed, Vk is a non-negative functional and we have

Vk = 0⇔ (S k, Ak, Ik,Rk) = Ek
+.

Whose derivative along the solution Ek
+ gives

V̇k = c1

(
1 −

S +k
S k

) Λ − βk (θAk + Ik) S k − µS k − σS S k + σS
k
⟨k⟩

n∑
i=1

p (i) S i


+ c2

(
1 −

A+k
Ak

) βk (θAk + Ik) S k − νkAk − µAk − σAAk + σA
k
⟨k⟩

n∑
i=1

p (i) Ai


+ c3

(
1 −

I+k
Ik

)
[νkAk − δkIk − µIk].

Since Ṡ +k = Ȧ+k = İ+k = 0 is satisfied at Ek
+, we can get:
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V̇k = c1

(
1 −

S +k
S k

) [
βk

(
θkA+k + I+k

)
S +k − βk (θkAk + Ik) S k + µ(S +k − S k) + σS (S +k − S k)

+σS
k
⟨k⟩

n∑
i=1

p (i)
(
S i − S +i

) + c2

(
1 −

A+k
Ak

) [
−βk

(
θkA+k + I+k

)
S +k + βk (θkAk + Ik) S k

+(νk + µ)(A+k − Ak) + σA(A+k − Ak) + σA
k
⟨k⟩

n∑
i=1

p (i)
(
Ai − A+i

)
+ c3

(
1 −

I+k
Ik

)
[νk(Ak − A+k ) + (δk + µ)(I+k − Ik)]

= ϕ1
k + ϕ

2
k + ϕ

3
k ,

where,

ϕ1
k = c1

(
1 −

S +k
S k

) [
βk

(
θkA+k + I+k

)
S +k − βk (θkAk + Ik) S k + µ(S +k − S k)

]
+ c2

(
1 −

A+k
Ak

) [
−βk

(
θkA+k + I+k

)
S +k + βk (θkAk + Ik) S k + (νk + µ)(A+k − Ak)

]
+ c3

(
1 −

I+k
Ik

)
[νk(Ak − A+k ) + (δk + µ)(I+k − Ik)];

ϕ2
k = c1

(
1 −

S +k
S k

) σS (S +k − S k) + σS
k
⟨k⟩

n∑
i=1

p (i)
(
S i − S +i

) ;

ϕ3
k = c2

(
1 −

A+k
Ak

) σA(A+k − Ak) + σA
k
⟨k⟩

n∑
i=1

p (i)
(
Ai − A+i

) .
First, simplifying ϕ1

k , we can get:

ϕ1
k =

(
c1βkθkA+k S +k − c1βkθkAkS k + c1βkI+k S +k − c1βkIkS k − c1βkθkA+k

S +k S +k
S k
+ c1βkAkS +k

−c1βkI+k
S +k S +k

S k
+ c1βkIkS +k − c2βkθkA+k S +k − c2βkI+k S +k + c2βkθkAkS k + c2βkIkS k

+c2βkθkA+k
A+k S +k

Ak
+ c2βkI+k

A+k S +k
Ak
− c2βkθkA+k S k−c2βkIk

A+k S k

Ak
+ c1βkθkA+k S +k − c1βkθkA+k S +k

)
+ c1

(
1 −

S +k
S k

)
(µ)(S +k − S k) + c2

(
1 −

A+k
Ak

)
(νk + µ)(A+k − Ak)

+ c3

(
1 −

I+k
Ik

) [
νk(Ak − A+k ) + (δk + µ)(I+k − Ik)

]
= −c1βkθkA+k S +k

(
S k

S +k
+

S +k
S k
− 2

)
− c1(µ)S +k

(
S k

S +k
+

S +k
S k
− 2

)
+ c1βkθkA+k S +k

(
Ak

A+k
+

A+k
Ak
− 2

)
− c2(νk + µ)A+k

(
Ak

A+k
+

A+k
Ak
− 2

)
− c3νkA+k

(
Ak

A+k
+

A+k
Ak
− 2

)
+ c3νkA+k

(
Ak

A+k
+

A+k
Ak
− 2

)
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+ c1βk

(
1 −

S +k
S k

) (
I+k S +k − IkS k

)
+ c1

(
1 −

A+k
Ak

) (
IkS k − I+k S +k

)
+ c3

(
1 −

I+k
Ik

)
(νkAk − νkA+k )

− c3(δk + µ)I+k

(
Ik

I+k
+

I+k
Ik
− 2

)
= ψ1

k + ψ
2
k + ψ

3
k ,

with,

ψ1
k = −c1βkθkA+k S +k

(
S k

S +k
+

S +k
S k
− 2

)
− c1µS +k

(
S k

S +k
+

S +k
S k
− 2

)
= c1

(
−Λ + βkI+k S +k

) ( S k

S +k
+

S +k
S k
− 2

)
+ σS

(
S k

S +k
+

S +k
S k
− 2

)
− σS

k
⟨k⟩

n∑
i=1

p (i)S +i

(
S k

S +k
+

S +k
S k
− 2

)
;

ψ2
k = c1βkθkA+k S +k

(
Ak

A+k
+

A+k
Ak
− 2

)
− c2(νk + µ)A+k

(
Ak

A+k
+

A+k
Ak
− 2

)
+ c3νkA+k

(
Ak

A+k
+

A+k
Ak
− 2

)
= σS

(
Ak

A+k
+

A+k
Ak
− 2

)
− σS

k
⟨k⟩

n∑
i=1

p (i)A+i

(
Ak

A+k
+

A+k
Ak
− 2

)
;

ψ3
k = −c3νkA+k

(
Ak

A+k
+

A+k
Ak
− 2

)
+ c1βk

(
1 −

S +k
S k

) (
I+k S +k − IkS k

)
+ c1βk

(
1 −

A+k
Ak

) (
IkS k − I+k S +k

)
+ c3

(
1 −

I+k
Ik

)
(νkAk − νkA+k ) − c3(δk + µ)I+k

(
Ik

I+k
+

I+k
Ik
− 2

)
= c1βkS +k I+k

(
3 −

S +k
S k
−

AkI+k
A+k Ik

−
A+k IkS k

AkI+k S +k

)
≤ 0.

It is seen that ψ3
k ≤ 0, by virtue of the elementary inequality (xyz)1/3

≤
x+y+z

3 .

Next, we discuss those with migration items:

ψ1
k + ϕ

2
k ≤ c1σS

n∑
i=1

p (i)S +i
k
⟨k⟩

(
S i

S +i
−

S iS +k
S +i S k

−
S k

S +k
+ 1

)
,

ψ2
k + ϕ

3
k = c2σA

n∑
i=1

p (i)A+i
k
⟨k⟩

(
Ai

A+i
−

AiA+k
A+i Ak

−
Ak

A+k
+ 1

)
.

Then, by virtue of the elementary inequality 1 − x + ln x ≤ 0,∀x > 0. we can get that

V̇k = ϕ
1
k + ϕ

2
k + ϕ

3
k = ψ

1
k + ψ

2
k + ψ

3
k + ϕ

2
k + ϕ

3
k

≤ σS

n∑
i=1

p(i)S +i
k
⟨k⟩

(
S i

S +i
−

S iS +k
S +i S k

−
S k

S +k
+ 1

)
+ σA

n∑
i=1

p(i)A+i
k
⟨k⟩

(
Ai

A+i
−

AiA+k
A+i Ak

−
Ak

A+k
+ 1

)
≤ σS

n∑
i=1

p(i)S +i
k
⟨k⟩

(
S i

S +i
+ ln

S i

S +i
−

S k

S +k
− ln

S k

S +k

)
+ σA

n∑
i=1

p(i)A+i
k
⟨k⟩

(
Ai

A+i
+ ln

Ai

A+i
−

Ak

A+k
− ln

Ak

A+k

)
.

Obviously, there exists a positive constant c such that

σA
k
⟨k⟩

n∑
i=1

p(i)A+i = cσS
k
⟨k⟩

n∑
i=1

p(i)S +i .
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Therefore,

V̇k ≤ σS
k
⟨k⟩

n∑
i=1

p(i)S +i

(
S i

S +i
+ ln

S i

S +i
−

S k

S +k
− ln

S +k
S k
+ c

Ai

A+i
+ c ln

Ai

A+i
− c

Ak

A+k
− c ln

Ak

A+k

)
= σS

k
⟨k⟩

n∑
i=1

p(i)S +i

(
c

Ai

A+i
+ c ln

Ai

A+i
+

S i

S +i
+ ln

S i

S +i

)
− σS

k
⟨k⟩

n∑
i=1

p(i)S +i

(
c

Ak

A+k
+ c ln

Ak

A+k

+
S k

S +k
+ ln

S k

S +k

)
= σS

k
⟨k⟩

n∑
i=1

p(i)S +i [Gi(S i, Ii) −Gk(S k, Ik)],

where Gi(S i, Ii) =
(
c Ai

A+i
+ c ln Ai

A+i
+ S i

S +i
+ ln S i

S +i

)
. Consider a randomly generated scale-free network

graph with adjacency matrix A = (Ai j)n∗n. The corresponding weighted directed graph is denoted as
(G, A). Let li =

∑
T∈Ti

w(T ), in which Ti is the set of all spanning trees T of (G, A) that are rooted
at vertex i, and w(T ) is the weight of T . In particular, if (G, A) is strongly connected, then li > 0
for 1 ≤ i ≤ n. and consider the corresponding weight matrix W = (wi j) of A, where wi j = σS

A ji
k j

S +j ,
and k j is the degree of node j. Then the following equation can be obtained from reference [25]:

n∑
i=1

liV̇i =

n∑
i=1

li

n∑
j=1

σS
A ji

k j
S +j [G j(S j, I j) −Gi(S i, Ii)] = 0.

In the context of mean-field, A ji represents the probability of connection between nodes i and j.
Then, by the virtue A ji =

k jki

N⟨k⟩ , it is seen that

n∑
k=1

lkV̇k ≤

n∑
k=1

lkσS
k
⟨k⟩

n∑
i=1

p(i)S +i [Gi(S i, Ii) −Gk(S k, Ik)]

=

n∑
i=1

li

n∑
j=1

σS
A ji

k j
S +j

[
G j(S j, I j) −Gi(S i, Ii)

]
= 0.

From another perspective, since we discuss scale-free networks in a mean-field sense, there is no
specific form of the adjacency matrix. However, we can be certain that its result corresponds to the
expectation of many specific matrices of scale-free networks. If li can be found for each term such that
n∑

i=1
liV̇i equals 0, then its expected form,

∑
k = 1nlkV̇k, must also equal 0.

From the previous context, we already know that the local disease equilibrium E+ has a unique
positive solution. By virtue of LaSalle’s invariance principle, we can conclude that the disease-free
equilibrium E+ is globally asymptotically stable.

Remark 3. In this paper, we approach the representation of scale-free networks statistically.
Consequently, there is no specific matrix diagram for a scale-free network. In such cases, finding
specific parameters like li becomes challenging. Therefore, we employ statistical concepts to
demonstrate the global stability of the model’s endemic equilibrium. In particular, assuming that the
spanning tree weights of nodes with the same degree in a scale-free network are equal, we can select
the weight of the spanning tree of nodes with the parameter lk representing degree k to show that
V̇ ≤ 0.
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5. Simulations

The results from the previous section indicate that when R0 < 1, the disease-free equilibrium E0

of model (2.1) is globally asymptotically stable, implying that the number of infected individuals will
tend towards zero, and the disease will eventually be eradicated. Conversely, when R0 > 1, the endemic
equilibrium E+ of model (2.1) is globally asymptotically stable, indicating that the number of infected
individuals will tend towards a positive value I+, and the disease will persist indefinitely. To verify
the stability of the equilibria I0 and I+ discussed in the previous section, numerical simulations using
MATLAB have been conducted in this section.

Our focus of this study is to offer a theoretical framework for analyzing and interpreting epidemic
dynamics and transmission patterns under various conditions. Therefore, the parameters employed
in this study, while thoughtfully constructed within the confines of a mathematical model, may not
directly mirror specific biological properties. The objective of the model is to explore and comprehend
the theoretical dynamics of infectious diseases and potential epidemiological patterns. This approach
enables us to analyze and predict the spread of diseases on a broader and more abstract level, thus
contributing to a deeper understanding of the nature of infectious disease dynamics.

To begin our exploration of the dynamics of various populations in the infectious disease model
within a scale-free network, we considered the topological characteristics of such a network. Utilizing
the preferential attachment algorithm, where nodes tend to connect to existing nodes with higher
degrees, we devised an algorithm for the random generation of a scale-free network. This resulted in a
network with a node count of N = 1000 and an initial network node count of m0 = 3. Following the
principles of the scale-free network model, m = 2 links were added for each new node, as illustrated
in Figure 1(a). As depicted in Figure 1(b), the node distribution of this scale-free network follows a
power-law form.

(a) Network topology illustration. (b) Node degree distribution statistics.

Figure 1. Scale-free graph with N =1000 nodes, m0 = 3, and m = 2.

Second, this study places emphasis on investigating the specific impact of varying migration rates
among different populations on the disease transmission capability. Accordingly, under the assumption
that parameters across different compartments are equal, the dynamics of various populations within

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4648–4668.



4663

the model have been taken into account. This approach facilitates the exploration of how differential
migration rates among susceptible, infected, and recovered individuals within a community network
influence the overall disease dynamics.

Select a set of parameter values: β = 0.1, θ = 0.02, ν = 0.1, δ = 0.1, σS = 0.01, σA = 0.01,
σR = 0.01, Λ = 0.1, µ = 0.1, and initial variable values S (0) = 0.0033, A(0) = 0.0033, I(0) = 0.0033,
R(0) = 0, corresponding to a basic reproduction number of R0 = 0.8124 < 1.

(a) Evolution trends of population densities at disease-
free equilibrium.

(b) Distribution of infected population densities by
degree at disease-free equilibrium.

Figure 2. Disease-free.

(a) Evolution trends of population densities at endemic
equilibrium.

(b) Distribution of infected population densities by
degree at endemic equilibrium.

Figure 3. Endemic.

From Figure 2, it can be observed that the equilibrium I is stable and tends towards I0.
Additionally, when all other parameters are held constant, the disease takes longer to disappear as
k increases.
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Select a set of parameter values: β = 0.1, θ = 0.02, ν = 0.1, δ = 0.1, σS = 0.01, σA = 0.01,
σR = 0.01, Λ = 0.1, µ = 0.1, and initial variable values S (0) = 0.0033, A(0) = 0.0033, I(0) = 0.0033,
R(0) = 0, corresponding to a basic reproduction number of R0 = 2.5235 > 1.

From Figure 3, it is evident that the equilibrium I is stable and tends towards I+. Additionally,
when all other parameters remain constant, an increase in k leads to an increase in I+, signifying a
higher concentration of the disease.

Observations of the expressions for R0 itself and its upper bound in Section 3 indicate that the
basic reproduction number R0 is influenced by factors such as the susceptibility migration rate and the
asymptomatic migration rate. To further illustrate and discuss potential epidemic scenarios, we provide
an example below.

Building upon the previous discussion, particularly from Eq (3.1), we have already established
the following expressions:

In the presence of migration, we have,

R0 = ρ
(
FV−1

)
= ρ

(
βdiag

(
θ(δ + µ) + v

(v + µ + σA)(δ + µ)
S 0

k

)
+

σA

v + µ + σA
K
)
.

Clearly, in the absence of migration, we have,

R0 = β
θ(δ + µ) + v

(v + µ)(δ + µ)
Λ

µ
.

It is evident from both expressions that they are related to the infection rate. To illustrate the
specific impact of migration on the numerical values of R0, taking the scale-free network illustrated in
Figure 1 as an example, and we select the following parameters: θ = 0.02, ν = 0.1, δ = 0.1, Λ = 0.1,
µ = 0.1, σS = 0.1, and σA = 0.1. Figure 4(a) is presented to provide an intuitive visualization of the
effects of migration.

(a) Relationship between R0 and infection rates under
different migration scenarios.

(b) Correlation of R0 with migration rates in different
populations.

Figure 4. The analysis of R0.

Next, to further investigate and demonstrate the influence of different population migration rates
on R0, we choose the parameters β = 0.1, θ = 0.02, ν = 0.1, δ = 0.1, Λ = 0.1, and µ = 0.1. This allows
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us to assess the impact of susceptibility migration rate σS and asymptomatic infection migration rate
σA on R0, as shown in Figure 4(b).

From Figure 4(a), it can be observed that, consistent with the expressions for R0, when migration is
present, R0 exhibits a nonlinear relationship with β, whereas in the absence of migration, R0 has a linear
relationship with β. Furthermore, under the same parameter conditions, when migration is present, the
value of R0 is higher than the basic reproduction number R0 in the absence of migration. This indicates
that inter-community migration makes it more challenging to eliminate infectious diseases. This result
is highly reasonable because, in the presence of migration, disease transmission is not only directly
related to the infection rate within the community but also influenced by the importation of cases from
other communities, leading to a nonlinear relationship. In contrast, in the absence of migration, R0 is
directly related to the infection rate β. Figure 4(b) illustrates that both the susceptibility migration rate
and the asymptomatic infection migration rate have an impact on the basic reproduction number R0.
Clearly, as the migration rates increase, the basic reproduction number also increases, indicating that
inter-community population migration increases the likelihood of disease outbreaks. Therefore, we
can conclude that the existence of migration between communities increases the probability of disease
outbreaks and widens the scope of disease transmission. If not properly controlled, it may lead to
widespread epidemic outbreaks.

Remark 4. Our results illustrate that community network structure and population migration have a
significant impact on the spread of infectious diseases. Notably, scale-free network structures increase
the probability of disease outbreaks, and population migration expands the scope of infection. It is
important to note that while the model is based on a scale-free network, the parameter values may
not directly reflect biological characteristics. However, the theoretical insights provided by this study
are crucial for developing effective infectious disease control strategies. Future work will explore the
integration of the model with specific biological data to enhance its practical application value and
biological accuracy.

6. Conclusions

Considering the exacerbation of the epidemic due to the presence of asymptomatic individuals,
especially individual migration between communities leading to widespread outbreaks, we establish a
network-based SAIR infectious disease model to investigate the impact of individual migration on the
spread of the disease in the presence of asymptomatic individuals. Based on this model, we calculate
the epidemic threshold R0 and find that disease transmission is not only related to intra-community
parameters such as infection rate and recovery rate but is also influenced by network structure and
different population migration rates between communities. Furthermore, we observe and prove, using
the method of decomposition theorem and constructing a Lyapunov function, the stability of the
disease-free equilibrium when R0 < 1 and the stability of the endemic equilibrium when R0 > 1.

Looking ahead, our objective is to enhance our model by incorporating individual connectivity
differences and delving into the impact of asymptomatic carriers on disease transmission. While our
current model does not differentiate individual connectivity, we acknowledge the significance of this
extension. Our research agenda encompasses addressing this aspect in future studies, planning to
explore more intricate network structures, and introducing additional data to better capture subtle
variations in individual connectivity. This improvement will not only contribute to a more realistic
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depiction of disease spread dynamics but will also extensively investigate the role of asymptomatic
carriers in various connectivity scenarios. In the future, we will consider models with heterogeneous
connectivity, conduct numerical tests, and comprehensively assess the influence of individual
connectivity on disease dynamics. Through these efforts, we aim to deepen our understanding of
disease transmission and provide valuable insights for the field of infectious disease modeling.
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