Research article Special Issues

Proactive dynamic vehicle routing problems considering cooperation services for the store-depot-integrated retailer


  • Received: 04 March 2023 Revised: 24 August 2023 Accepted: 29 August 2023 Published: 20 September 2023
  • Distribution costs remain consistently high in crowded city road networks, posing challenges for traditional distribution methods in efficiently handling dynamic online customer orders. To address this issue, this paper introduces the Proactive Dynamic Vehicle Routing Problem considering Cooperation Service (PDVRPCS) model. Based on proactive prediction and order-matching strategies, the model aims to develop a cost-effective and responsive distribution system. A novel solution framework is proposed, incorporating a proactive prediction method, a matching algorithm and a hybrid Genetic Algorithm-Simulated Annealing (GA-SA) algorithm. To validate the effectiveness of the proposed model and algorithm, a case study is conducted. The experimental results demonstrate that the dynamic scheme can significantly reduce the number of vehicles required for distribution, leading to cost reduction and increased efficiency.

    Citation: Xianlong Ge, Yonghong Liang, Yuanzhi Jin, Chunbing Song. Proactive dynamic vehicle routing problems considering cooperation services for the store-depot-integrated retailer[J]. Mathematical Biosciences and Engineering, 2023, 20(10): 18030-18062. doi: 10.3934/mbe.2023801

    Related Papers:

  • Distribution costs remain consistently high in crowded city road networks, posing challenges for traditional distribution methods in efficiently handling dynamic online customer orders. To address this issue, this paper introduces the Proactive Dynamic Vehicle Routing Problem considering Cooperation Service (PDVRPCS) model. Based on proactive prediction and order-matching strategies, the model aims to develop a cost-effective and responsive distribution system. A novel solution framework is proposed, incorporating a proactive prediction method, a matching algorithm and a hybrid Genetic Algorithm-Simulated Annealing (GA-SA) algorithm. To validate the effectiveness of the proposed model and algorithm, a case study is conducted. The experimental results demonstrate that the dynamic scheme can significantly reduce the number of vehicles required for distribution, leading to cost reduction and increased efficiency.



    加载中


    [1] N. Bose, Wal-Mart's next move against Amazon: more warehouses, faster shipping, Technol. News, 2016.
    [2] A. H. Hübner, H. Kuhn, J. Wollenburg, Last mile fulfilment and distribution in omni-channel grocery retailing: a strategic planning framework, Int. J. Retail Distrib. Manage., 44 (2016). https://doi.org/10.1108/IJRDM-11-2014-0154
    [3] G. Bensinger, Amazon's next delivery drone: you, in Wall Street Journal, 108 (2015).
    [4] B. W. Thomas, Waiting strategies for anticipating service requests from known customer locations, Transp. Sci., 41 (2007), 281–429. https://doi.org/10.1287/trsc.1060.0183 doi: 10.1287/trsc.1060.0183
    [5] C. Lima, B. M. Luz, S. T. Takemoto, P. Barisson, R. Tezzin, L. Peres, et al., Strategic modeling for the characterization of the conditions that allow the anticipation of the consumer's requests, Open J. Social Sci., 3 (2015), 146–160. https://doi.org/10.4236/jss.2015.310021 doi: 10.4236/jss.2015.310021
    [6] K. S. Hartzel, C. A. Wood, Factors that affect the improvement of demand forecast accuracy through point-of-sale reporting, Eur. J. Oper. Res., 260 (2017), 171–182. https://doi.org/10.1016/j.ejor.2016.11.047 doi: 10.1016/j.ejor.2016.11.047
    [7] S. Ma, R. Fildes, A retail store SKU promotions optimization model for category multi-period profit maximization, Eur. J. Oper. Res., 260 (2017), 680–692. https://doi.org/10.1016/j.ejor.2016.12.032 doi: 10.1016/j.ejor.2016.12.032
    [8] S. Zhu, R. Dekker, W. van Jaarsveld, R. W. Renjie, A. J. Koning, An improved method for forecasting spare parts demand using extreme value theory, Eur. J. Oper. Res., 261 (2017), 169–181. https://doi.org/10.1016/j.ejor.2017.01.053 doi: 10.1016/j.ejor.2017.01.053
    [9] R. Belka, M. Godlewski, Vehicle routing optimization system with smart geopositioning updates, Appl. Sci., 11 (2021), 10933. https://doi.org/10.3390/app112210933 doi: 10.3390/app112210933
    [10] F. Ferrucci, S. Bock, Pro-active real-time routing in applications with multiple request patterns, Eur. J. Oper. Res., 253 (2016), 356–371. https://doi.org/10.1016/j.ejor.2016.02.016 doi: 10.1016/j.ejor.2016.02.016
    [11] A. M. Fathollahi-Fard, A. Ahmadi, F. Goodarzian, N. Cheikhrouhou, A bi-objective home healthcare routing and scheduling problem considering patients' satisfaction in a fuzzy environment, Appl. Soft Comput., 93 (2020), 106385. https://doi.org/10.1016/j.asoc.2020.106385 doi: 10.1016/j.asoc.2020.106385
    [12] E. Fernández, M. Roca-Riu, M. G. Speranza, The shared customer collaboration vehicle routing problem, Eur. J. Oper. Res., 265 (2018), 1078–1093. https://doi.org/10.1016/j.ejor.2017.08.051 doi: 10.1016/j.ejor.2017.08.051
    [13] J. Paul, N. Agatz, R. Spliet, R. D. Koster, Shared capacity routing problem - an omni-channel retail study, Eur. J. Oper. Res., 273 (2019), 731–739. https://doi.org/10.1016/j.ejor.2018.08.027 doi: 10.1016/j.ejor.2018.08.027
    [14] C. Archetti, M. Savelsbergh, M. G. Speranza, The vehicle routing problem with occasional drivers, Eur. J. Oper. Res., 254 (2016), 472–480. https://doi.org/10.1016/j.ejor.2016.03.049 doi: 10.1016/j.ejor.2016.03.049
    [15] G. Macrina, L. Pugliese, F. Guerriero, D. Laganà, The vehicle routing problem with occasional drivers and time windows, in ODS 2017: Optimization and Decision Science: Methodologies and Applications, (2017), 577–587. https://doi.org/10.1007/978-3-319-67308-0_58
    [16] A. M. Arslan, N. Agatz, L. Kroon, R. Zuidwijk, Crowdsourced delivery: a dynamic pickup and delivery problem with Ad-hoc drivers, Transp. Sci., 53 (2016), 1–318. https://doi.org/10.1287/trsc.2017.0803 doi: 10.1287/trsc.2017.0803
    [17] M. Mojtahedi, A. Fathollahi-Fard, R. Tavakkoli-Moghaddam, S. Newton, Sustainable vehicle routing problem for coordinated solid waste management, J. Ind. Inf. Integr., 23 (2021), 100220. https://doi.org/10.1016/j.jii.2021.100220 doi: 10.1016/j.jii.2021.100220
    [18] A. Fathollahi-Fard, M. Hajiaghaei-Keshteli, R. Tavakkoli-Moghaddam, N. Smith, Bi-level programming for home health care supply chain considering outsourcing, J. Ind. Inf. Integr., 25 (2022), 100246. https://doi.org/10.1016/j.jii.2021.100246 doi: 10.1016/j.jii.2021.100246
    [19] Y. Wang, Y. Yuan, K. Assogba, K. Gong, H. Wang, M. Xu, et al., Design and profit allocation in two-echelon heterogeneous cooperative logistics network optimization, J. Adv. Transp., 2018 (2018), 4607493. https://doi.org/10.1155/2018/4607493 doi: 10.1155/2018/4607493
    [20] I. Dayarian, M. Savelsbergh, Crowdshipping and same-day delivery: employing in-store customers to deliver online orders, Prod. Oper. Manage., 29 (2020), 2153–2174. https://doi.org/10.1111/poms.13219 doi: 10.1111/poms.13219
    [21] S. Luo, Y. Wang, J. Tang, X. Guan, M. Xu, Two-echelon multidepot logistics network design with resource sharing, J. Adv. Transp., 2021 (2021), 6619539. https://doi.org/10.1155/2021/6619539 doi: 10.1155/2021/6619539
    [22] X. Ren, X. Jiang, L. Ren, L. Meng, A multi-center joint distribution optimization model considering carbon emissions and customer satisfaction, Math. Biosci. Eng., 20 (2023), 683–706. https://doi.org/10.3934/mbe.2023031 doi: 10.3934/mbe.2023031
    [23] K. Gdowska, A. Viana, J. P. Pedroso, Stochastic last-mile delivery with crowdshipping, Transp. Res. Procedia, 30 (2018), 90–100. https://doi.org/10.1016/j.trpro.2018.09.011 doi: 10.1016/j.trpro.2018.09.011
    [24] S. Y. Tan, W. C. Yeh, The vehicle routing problem: state-of-the-art classification and review, Appl. Sci., 11 (2021), 10295. https://doi.org/10.3390/app112110295 doi: 10.3390/app112110295
    [25] R. A. Russell, W. C. Chiang, Scatter search for the vehicle routing problem with time windows, Eur. J. Oper. Res., 169 (2006), 606–622. https://doi.org/10.1016/j.ejor.2004.08.018 doi: 10.1016/j.ejor.2004.08.018
    [26] Q. Zhang, T. Zhen, Y. Zhu, W. Zhang, Z. Ma, A hybrid intelligent algorithm for the vehicle routing with time windows, in Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and Methodological Issues, (2008), 47–54. https://doi.org/10.1007/978-3-540-87442-3_7
    [27] C. B. Cheng, K. P. Wang, Solving a vehicle routing problem with time windows by a decomposition technique and a genetic algorithm, Expert Syst. Appl., 36 (2009), 7758–7763. https://doi.org/10.1016/j.eswa.2008.09.001 doi: 10.1016/j.eswa.2008.09.001
    [28] T. Vidal, T. G. Crainic, M. Gendreau, C. Prins, A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time-windows, Comput. Oper. Res., 40 (2013), 475–489. https://doi.org/10.1016/j.cor.2012.07.018 doi: 10.1016/j.cor.2012.07.018
    [29] S. Belhaiza, P. Hansen, G. Laporte, A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with multiple time windows, Comput. Oper. Res., 52 (2014), 269–281. https://doi.org/10.1016/j.cor.2013.08.010 doi: 10.1016/j.cor.2013.08.010
    [30] Y. Shi, L. Lv, F. Hu, Q. Han, A heuristic solution method for multi-depot vehicle routing-based waste collection problems, Appl. Sci., 10 (2020), 2403. https://doi.org/10.3390/app10072403 doi: 10.3390/app10072403
    [31] J. Pasha, A. L. Nwodu, A. Fathollahi-Fard, G. Tian, Z. Li, H. Wang, et al., Exact and metaheuristic algorithms for the vehicle routing problem with a factory-in-a-box in multi-objective settings, Adv. Eng. Inf., 52 (2022), 101623. https://doi.org/10.1016/j.aei.2022.101623 doi: 10.1016/j.aei.2022.101623
    [32] A. Fathollahi-Fard, A. Ahmadi, B. Karimi, Multi-objective optimization of home healthcare with working-time balancing and care continuity, Sustainability, 13 (2021), 12431. https://doi.org/10.3390/su132212431 doi: 10.3390/su132212431
    [33] R. Baños, J. Ortega, C. Gil, A. Márquez, F. de Toro, A hybrid meta-heuristic for multi-objective vehicle routing problems with time windows, Comput. Ind. Eng., 65 (2013), 286–296. https://doi.org/10.1016/j.cie.2013.01.007 doi: 10.1016/j.cie.2013.01.007
    [34] E. Pourrahmani, M. Jaller, Crowdshipping in last mile deliveries: operational challenges and research opportunities, Socio-Econ. Plann. Sci., 78 (2021), 101063. https://doi.org/10.1016/j.seps.2021.101063 doi: 10.1016/j.seps.2021.101063
    [35] M. Jaller, C. Otero-Palencia, A. Pahwa, Automation, electrification, and shared mobility in urban freight: opportunities and challenges, Transp. Res. Procedia, 46 (2020), 13–20. https://doi.org/10.1016/j.trpro.2020.03.158 doi: 10.1016/j.trpro.2020.03.158
    [36] W. Dai, Q. Zhong, C. Qi, Multi-stage multi-attribute decision-making method based on the prospect theory and triangular fuzzy MULTIMOORA, Soft Comput., 24 (2020), 9429–9440. https://doi.org/10.1007/s00500-018-3017-0 doi: 10.1007/s00500-018-3017-0
    [37] D. Kahneman, A. Tversky, Prospect theory: an analysis of decision under risk, in Handbook of the Fundamentals of Financial Decision Making, World Scientific, (2013), 99–127. https://doi.org/10.1142/9789814417358_0006
    [38] S. Datta, N. Sahu, S. Mahapatra, Robot selection based on grey‐MULTIMOORA approach, in Grey Systems: Theory and Application, 3 (2013). https://doi.org/10.1108/GS-05-2013-0008
    [39] X. Ge, Y. Jin, Chapter 18 - Artificial intelligence algorithms for proactive dynamic vehicle routing problem, in Applications of Artificial Intelligence in Process Systems Engineering, (2021), 497–522. https://doi.org/10.1016/B978-0-12-821092-5.00011-5
    [40] A. K. Jain, Y. Zhou, T. Mustufa, E. C. Burdette, G. S. Chirikjian, G. Fichtinger, Matching and reconstruction of brachytherapy seeds using the Hungarian algorithm (MARSHAL), Med. Phys., 32 (2005), 3475–3492. https://doi.org/10.1118/1.2104087 doi: 10.1118/1.2104087
    [41] A. Mirzaeinia, S. Bradley, M. Hassanalian, Drone-station matching in smart cities through Hungarian algorithm: power minimization and management, in AIAA Propulsion and Energy 2019 Forum, 2019 (2019), 4151. https://doi.org/10.2514/6.2019-4151
    [42] G. A. Mills-Tettey, A. Stentz, M. B. Dias, The dynamic Hungarian algorithm for the assignment problem with changing costs, 2007. Available from: https://www.ri.cmu.edu/pub_files/pub4/mills_tettey_g_ayorkor_2007_3/mills_tettey_g_ayorkor_2007_3.pdf.
    [43] M. R. Chen, Y. Z. Lu, A novel elitist multiobjective optimization algorithm: multiobjective extremal-optimization, Eur. J. Oper. Res., 188 (2008), 637–651. https://doi.org/10.1016/j.ejor.2007.05.008 doi: 10.1016/j.ejor.2007.05.008
    [44] J. Chen, J. Shi, A multi-compartment vehicle routing problem with time windows for urban distribution – a comparison study on particle swarm optimization algorithms, Comput. Ind. Eng., 133 (2019), 95–106. https://doi.org/10.1016/j.cie.2019.05.008 doi: 10.1016/j.cie.2019.05.008
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1145) PDF downloads(55) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(18)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog