Research article Special Issues

An adaptive information-theoretic experimental design procedure for high-to-low fidelity calibration of prostate cancer models

  • † The authors contributed equally to this work.
  • Received: 14 June 2023 Revised: 24 August 2023 Accepted: 10 September 2023 Published: 19 September 2023
  • The use of mathematical models to make predictions about tumor growth and response to treatment has become increasingly prevalent in the clinical setting. The level of complexity within these models ranges broadly, and the calibration of more complex models requires detailed clinical data. This raises questions about the type and quantity of data that should be collected and when, in order to maximize the information gain about the model behavior while still minimizing the total amount of data used and the time until a model can be calibrated accurately. To address these questions, we propose a Bayesian information-theoretic procedure, using an adaptive score function to determine the optimal data collection times and measurement types. The novel score function introduced in this work eliminates the need for a penalization parameter used in a previous study, while yielding model predictions that are superior to those obtained using two potential pre-determined data collection protocols for two different prostate cancer model scenarios: one in which we fit a simple ODE system to synthetic data generated from a cellular automaton model using radiotherapy as the imposed treatment, and a second scenario in which a more complex ODE system is fit to clinical patient data for patients undergoing intermittent androgen suppression therapy. We also conduct a robust analysis of the calibration results, using both error and uncertainty metrics in combination to determine when additional data acquisition may be terminated.

    Citation: Heyrim Cho, Allison L. Lewis, Kathleen M. Storey, Anna C. Zittle. An adaptive information-theoretic experimental design procedure for high-to-low fidelity calibration of prostate cancer models[J]. Mathematical Biosciences and Engineering, 2023, 20(10): 17986-18017. doi: 10.3934/mbe.2023799

    Related Papers:

  • The use of mathematical models to make predictions about tumor growth and response to treatment has become increasingly prevalent in the clinical setting. The level of complexity within these models ranges broadly, and the calibration of more complex models requires detailed clinical data. This raises questions about the type and quantity of data that should be collected and when, in order to maximize the information gain about the model behavior while still minimizing the total amount of data used and the time until a model can be calibrated accurately. To address these questions, we propose a Bayesian information-theoretic procedure, using an adaptive score function to determine the optimal data collection times and measurement types. The novel score function introduced in this work eliminates the need for a penalization parameter used in a previous study, while yielding model predictions that are superior to those obtained using two potential pre-determined data collection protocols for two different prostate cancer model scenarios: one in which we fit a simple ODE system to synthetic data generated from a cellular automaton model using radiotherapy as the imposed treatment, and a second scenario in which a more complex ODE system is fit to clinical patient data for patients undergoing intermittent androgen suppression therapy. We also conduct a robust analysis of the calibration results, using both error and uncertainty metrics in combination to determine when additional data acquisition may be terminated.



    加载中


    [1] P. M. Altrock, L. L. Liu, F. Michor, The mathematics of cancer: Integrating quantitative models, Nat. Rev. Cancer, 15 (2015), 730–745. https://doi.org/10.1038/nrc4029 doi: 10.1038/nrc4029
    [2] O. Lavi, M. M. Gottesman, D. Levy, The dynamics of drug resistance: A mathematical perspective, Drug Resist. Updates, 15 (2012), 90–97. http://dx.doi.org/10.1016/j.drup.2012.01.003 doi: 10.1016/j.drup.2012.01.003
    [3] A. Swierniak, M. Kimmel, J. Smieja, Mathematical modeling as a tool for planning anticancer therapy, Eur. J. Pharmacol., 625 (2009), 108–121. https://doi.org/10.1016/j.ejphar.2009.08.041 doi: 10.1016/j.ejphar.2009.08.041
    [4] H. M. Byrne, Dissecting cancer through mathematics: From the cell to the animal model, Nat. Rev. Cancer, 10 (2010), 221–230. https://doi.org/10.1038/nrc2808 doi: 10.1038/nrc2808
    [5] R. C. Rockne, A. Hawkins-Daarud, K. R. Swanson, J. P. Sluka, J. A. Glazier, P. Macklin, et al., The 2019 mathematical oncology roadmap, Phys. Biol., 16 (2019), 1–33.
    [6] D. A. Chambers, E. Amir, R. R. Saleh, D. Rodin, N. L. Keating, T. J. Osterman, et al., The impact of big data research on practice, policy, and cancer care, Am. Soc. Clin. Oncol. Edu. Book, 39 (2019), e167–e175.
    [7] J. E. Bibault, P. Giraud, A. Burgun, Big Data and machine learning in radiation oncology: State of the art and future prospects, Cancer Lett., 382 (2016), 110–117. https://doi.org/10.1016/j.canlet.2016.05.033 doi: 10.1016/j.canlet.2016.05.033
    [8] I. Harshe, H. Enderling, R. Brady-Nicholls, Predicting patient-specific tumor dynamics: How many measurements are necessary?, Cancers, 15 (2023), 1368. https://doi.org/10.3390/cancers15051368 doi: 10.3390/cancers15051368
    [9] S. Prokopiou, E. G. Moros, J. Poleszczuk, J. Caudell, J. F. Torres-Roca, K. Latifi, et al., A proliferation saturation index to predict radiation response and personalize radiotherapy fractionation, Radiat. Oncol., 10 (2015), 1–8. https://doi.org/10.1186/s13014-015-0465-x doi: 10.1186/s13014-015-0465-x
    [10] M. Zahid, N. Mohsin, A. Mohamed, J. Caudell, L. Harrison, C. Fuller, et al., Forecasting individual patient response to radiation therapy in head and neck cancer with a dynamic carrying capacity model, Int. J. Radiat. Oncol. Biol. Phys., 111 (2021), 693–704. https://doi.org/10.1016/j.ijrobp.2021.05.132 doi: 10.1016/j.ijrobp.2021.05.132
    [11] H. Chandarana, H. Wang, R. Tijssen, I. J. Das, Emerging role of mri in radiation therapy, J. Magn. Reson. Imaging, 48 (2018), 1468–1478. https://doi.org/10.1002/jmri.26271 doi: 10.1002/jmri.26271
    [12] L. H. Da Cruz, I. Rodriguez, R. Domingues, E. Gasparetto, A. Sorensen, Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma, Am. J. Neuroradiol., 32 (2011), 1978–1985. https://doi.org/10.3174/ajnr.A2397 doi: 10.3174/ajnr.A2397
    [13] R. Ljumanovic, J. A. Langendijk, O. S. Hoekstra, D. L. Knol, C. R. Leemans, J. A. Castelijns, Pre-and post-radiotherapy mri results as a predictive model for response in laryngeal carcinoma, Eur. Radiol., 18 (2008), 2231–2240. https://doi.org/10.1007/s00330-008-0986-x doi: 10.1007/s00330-008-0986-x
    [14] F.-G. Wieland, A. L. Hauber, M. Rosenblatt, C. Tönsing, J. Timmer, On structural and practical identifiability, Current Opin. Syst. Biol., 25 (2021), 60–69. https://doi.org/10.1016/j.coisb.2021.03.005 doi: 10.1016/j.coisb.2021.03.005
    [15] S. Gupta, R. Lee, J. Faeder, Parallel tempering with lasso for model reduction in systems biology, PLoS Comput. Biol., 16 (2020), e1007669. https://doi.org/10.1371/journal.pcbi.1007669
    [16] M. Saccomani, K. Thomaseth, The union between structural and practical identifiability makes strength in reducing oncological model complexity: A case study, Complexity, 2018 (2018), 2380650. https://doi.org/10.1155/2018/2380650 doi: 10.1155/2018/2380650
    [17] P. Perdikaris, M. Raissi, A. Damianou, N. D. Lawrence, G. E. Karniadakis, Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling, Proc. Royal Soc. A Math. Phys. Eng. Sci., 473 (2017), 20160751. https://doi.org/10.1098/rspa.2016.0751 doi: 10.1098/rspa.2016.0751
    [18] M. G. Fernández-Godino, C. Park, N. H. Kim, R. T. Haftka, Review of multi-fidelity models, preprint, arXiv: 1609.07196.
    [19] X. Meng, G. E. Karniadakis, A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse pde problems, J. Comput. Phys., 401 (2020), 109020. https://doi.org/10.1016/j.jcp.2019.109020 doi: 10.1016/j.jcp.2019.109020
    [20] H. Cho, A. L. Lewis, K. M. Storey, Bayesian information-theoretic calibration of radiotherapy sensitivity parameters for informing effective scanning protocols in cancer, J. Clin. Med., 9 (2020), 3208. https://doi.org/10.3390/jcm9103208 doi: 10.3390/jcm9103208
    [21] A. Lewis, R. Smith, B. Williams, V. Figueroa, An information theoretic approach to use high-fidelity codes to calibrate low-fidelity codes, J. Comput. Phys., 324 (2016), 24–43. https://doi.org/10.1016/j.jcp.2016.08.001 doi: 10.1016/j.jcp.2016.08.001
    [22] G. Terejanu, R. R. Upadhyay, K. Miki, Bayesian experimental design for the active nitridation of graphite by atomic nitrogen, Exp. Thermal Fluid Sci., 36 (2012), 178–193. https://doi.org/10.1016/j.expthermflusci.2011.09.012 doi: 10.1016/j.expthermflusci.2011.09.012
    [23] N. Bruchovsky, L. Klotz, J. Crook, S. Malone, C. Ludgate, W. Morris, et al., Final results of the canadian prospective phase II trial of intermittent androgen suppression for men in biochemical recurrence after radiotherapy for locally advanced prostate cancer, Cancer, 107 (2006), 389–395. https://doi.org/10.1002/cncr.21989 doi: 10.1002/cncr.21989
    [24] W. Meade, A. Weber, T. Phan, E. Hampston, L. Resa, J. Nagy, et al., High accuracy indicators of androgen suppression therapy failure for prostate cancer—a modeling study, Cancers, 14 (2022), 4033. https://doi.org/10.3390/cancers14164033 doi: 10.3390/cancers14164033
    [25] A. Kraskov, H. Stögbauer, P. Grassberger, Estimating mutual information, Phys. Rev. E, 69 (2004), 066138. https://doi.org/10.1103/PhysRevE.69.066138 doi: 10.1103/PhysRevE.69.066138
    [26] H. Cho, A. Lewis, K. Storey, R. Jennings, B. Shtylla, A. Reynolds, et al., A framework for performing data-driven modeling of tumor growth with radiotherapy treatment, in Springer Special Issue: Using Mathematics to Understand Biological Complexity, Women in Mathematical Biology, (2021), 179–216. https://doi.org/10.1007/978-3-030-57129-0_8
    [27] E. J. Hall, A. J. Giaccia, Radiobiology for the Radiologist, Philadelphia, 1994.
    [28] H. Enderling, M. A. Chaplain, P. Hahnfeldt, Quantitative modeling of tumor dynamics and radiotherapy, Acta Biotheor., 58 (2010), 341–353. https://doi.org/10.1007/s10441-010-9111-z doi: 10.1007/s10441-010-9111-z
    [29] V. M. Pérez-García, M. Bogdanska, A. Martínez-González, J. Belmonte-Beitia, P. Schucht, L. A. Pérez-Romasanta, Delay effects in the response of low-grade gliomas to radiotherapy: A mathematical model and its therapeutical implications, Math. Med. Biol., 32 (2015), 307–329. https://doi.org/10.1093/imammb/dqu009
    [30] D. J. Brenner, E. J. Hall, Fractionation and protraction for radiotherapy of prostate carcinoma, Int. J. Radiat. Oncol. Biol. Phys., 43 (1999), 1095–1101.
    [31] M. Paczkowski, W. W. Kretzschmar, B. Markelc, S. K. Liu, L. A. Kunz-Schughart, A. L. Harris, et al., Reciprocal interactions between tumour cell populations enhance growth and reduce radiation sensitivity in prostate cancer, Commun. Biol., 4 (2021). https://doi.org/10.1038/s42003-020-01529-5
    [32] N. Spry, L. Kristjanson, B. Hooton, L. Hayden, G. Neerhut, H. Gurney, et al., Adverse effects to quality of life arising from treatment can recover with intermittent androgen suppression in men with prostate cancer, Eur. J. Cancer, 42 (2006), 1083–1092. https://doi.org/10.1016/j.ejca.2006.01.029 doi: 10.1016/j.ejca.2006.01.029
    [33] T. Phan, K. Nguyen, P. Sharma, Y. Kuang, The impact of intermittent androgen suppression therapy in prostate cancer modeling, Appl. Sci., 9 (2019), 36. https://doi.org/10.3390/app9010036 doi: 10.3390/app9010036
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1318) PDF downloads(51) Cited by(0)

Article outline

Figures and Tables

Figures(18)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog