Research article

Exploration on dynamics in a ratio-dependent predator-prey bioeconomic model with time delay and additional food supply


  • Received: 21 April 2023 Revised: 28 May 2023 Accepted: 04 July 2023 Published: 17 July 2023
  • In this manuscript, a novel ratio-dependent predator-prey bioeconomic model with time delay and additional food supply is investigated. We first change the bioeconomic model into a normal version by virtue of the differential-algebraic system theory. The local steady-state of equilibria and Hopf bifurcation could be derived by varying time delay. Later, the formulas of the direction of Hopf bifurcation and the properties of the bifurcating periodic solutions are obtained by the normal form theory and the center manifold theorem. Moreover, employing the Pontryagin's maximum principle and considering the instantaneous annual discount rate, the optimal harvesting problem of the model without time delay is analyzed. Finally, four numeric examples are carried out to verify the rationality of our analytical findings. Our analytical results show that Hopf bifurcation occurs in this model when the value of bifurcation parameter, the time delay of the maturation time of prey, crosses a critical value.

    Citation: Ting Yu, Qinglong Wang, Shuqi Zhai. Exploration on dynamics in a ratio-dependent predator-prey bioeconomic model with time delay and additional food supply[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 15094-15119. doi: 10.3934/mbe.2023676

    Related Papers:

  • In this manuscript, a novel ratio-dependent predator-prey bioeconomic model with time delay and additional food supply is investigated. We first change the bioeconomic model into a normal version by virtue of the differential-algebraic system theory. The local steady-state of equilibria and Hopf bifurcation could be derived by varying time delay. Later, the formulas of the direction of Hopf bifurcation and the properties of the bifurcating periodic solutions are obtained by the normal form theory and the center manifold theorem. Moreover, employing the Pontryagin's maximum principle and considering the instantaneous annual discount rate, the optimal harvesting problem of the model without time delay is analyzed. Finally, four numeric examples are carried out to verify the rationality of our analytical findings. Our analytical results show that Hopf bifurcation occurs in this model when the value of bifurcation parameter, the time delay of the maturation time of prey, crosses a critical value.



    加载中


    [1] A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, 1925.
    [2] V. Volterra, Variations and fluctuations of the number of individuals in animal species living together, J. Cons. Perm. Int. Ent. Mer., 3 (1928), 3–51. https://doi.org/10.1093/icesjms/3.1.3 doi: 10.1093/icesjms/3.1.3
    [3] R. S. Cantrell, C. Cosner, On the dynamics of predator-prey models with the Beddington-DeAngelis functional response, J. Math. Anal. Appl., 257 (2001), 206–222. https://doi.org/10.1006/jmaa.2000.7343 doi: 10.1006/jmaa.2000.7343
    [4] D. M. Xiao, S. G. Ruan, Codimension two bifurcations in a predator-prey system with group defense, Int. J. Bifurcat. Chaos., 11 (2001), 2123–2131. https://doi.org/10.1142/S021812740100336X doi: 10.1142/S021812740100336X
    [5] T. K. Kar, S. Misra, Influence of prey reserve in a prey-predator fishery, Nonlinear Anal., 65 (2006), 1725–1735. https://doi.org/10.1016/j.na.2005.11.049 doi: 10.1016/j.na.2005.11.049
    [6] A. A. Elsadany, A. E. Matouk, Dynamical behaviors of fractional-order Lotka-Volterra predator-prey model and its discretization, J. Appl. Math. Comput., 49 (2015), 269–283. https://doi.org/10.1007/s12190-014-0838-6 doi: 10.1007/s12190-014-0838-6
    [7] C. S. Holling, The components of predation as revealed by a study of small-mammal predation of the European Pine Sawfly, Can. Ent., 91 (1959), 293–320. https://doi.org/10.4039/Ent91293-5 doi: 10.4039/Ent91293-5
    [8] C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can., 97 (1965), 5–60. https://doi.org/10.4039/entm9745fv doi: 10.4039/entm9745fv
    [9] C. S. Holling, The functional response of invertebrate predators to prey density, Mem. Entomol. Soc. Can., 98 (1966), 5–86. https://doi.org/10.4039/entm9848fv doi: 10.4039/entm9848fv
    [10] R. E. Kooij, A. Zegeling, Qualitative properties of two-dimensional predator-prey systems, Nonlinear Anal., 29 (1997), 693–715. https://doi.org/10.1016/S0362-546X(96)00068-5 doi: 10.1016/S0362-546X(96)00068-5
    [11] M. Hesaaraki, S. M. Moghadas, Existence of limit cycles for predator-prey systems with a class of functional responses, Ecol. Modell., 142 (2001), 1–9. https://doi.org/10.1016/S0304-3800(00)00442-7 doi: 10.1016/S0304-3800(00)00442-7
    [12] H. Wang, C. H. Zhang, Dynamics of a predator-prey reaction-diffusion system with non-monotonic functional response function, Ann. Appl. Math., 34 (2018), 199–220.
    [13] D. L. De Angelis, R. A. Goldstein, R. V. O'Neill, A model for tropic interactions, Ecology, 56 (1975), 881–892. https://doi.org/10.2307/1936298 doi: 10.2307/1936298
    [14] L. R. Ginzburg, H. R. Akcakaya, Consequences of ratio-dependent predation for steady-state properties of ecosystems, Ecology, 73 (1992), 1536–1543. https://doi.org/10.2307/1940006 doi: 10.2307/1940006
    [15] A. P. Gutierrez, Physiological basis of ratio-dependent predator-prey theory: the metabolic pool model as a paradigm, Ecology, 73 (1992), 1552–1563. https://doi.org/10.2307/1940008 doi: 10.2307/1940008
    [16] H. R. Akcakaya, R. Arditi, L. R. Ginzburg, Ratio-dependent prediction: An abstraction that works, Ecology, 76 (1995), 995–1004. https://doi.org/10.2307/1939362 doi: 10.2307/1939362
    [17] A. A. Berryman, The origins and evolutions of predator-prey theory, Ecology, 73 (1992), 1530–1535. https://doi.org/10.2307/1940005 doi: 10.2307/1940005
    [18] M. Haque, Ratio-dependent predator-prey models of interacting populations, Bull. Math. Biol., 71 (2009), 430–452. https://doi.org/10.1007/s11538-008-9368-4 doi: 10.1007/s11538-008-9368-4
    [19] D. Kesh, A. K. Sarkar, A. B. Roy, Persistence of two prey-one predator system with ratio-dependent predator influence, Math. Meth. Appl. Sci., 23 (2000), 347–356.
    [20] R. Xu, L. S. Chen, Persistence and stability for a two-species ratio-dependent predator-prey system with time delay in a two-patch environment, Comput. Math. Appl., 40 (2000), 577–588. https://doi.org/10.1016/S0898-1221(00)00181-4 doi: 10.1016/S0898-1221(00)00181-4
    [21] S. Y. Tang, L. S. Chen, Global qualitative analysis for a ratio-dependent predator-prey model with delay, J. Math. Anal. Appl., 266 (2002), 401–419. https://doi.org/10.1006/jmaa.2001.7751 doi: 10.1006/jmaa.2001.7751
    [22] Y. H. Fan, W. T. Li, Permanence for a delayed discrete ratio-dependent predator-prey system with Holling type functional response, J. Math. Anal. Appl., 299 (2004), 357–374. https://doi.org/10.1016/j.jmaa.2004.02.061 doi: 10.1016/j.jmaa.2004.02.061
    [23] P. D. N. Srinivasu, B. Prasad, Role of quantity of additional food to predators as a control in predator-prey systems with relevance to pest management and biological conservation, Bull. Math. Biol., 73 (2011), 2249–2276. https://doi.org/10.1007/s11538-010-9601-9 doi: 10.1007/s11538-010-9601-9
    [24] A. Basheer, E. Quansah, R. D. Parshad, The effect of additional food in Holling Tanner type models, Int. J. Dyn. Control, 7 (2019), 1195–1212. https://doi.org/10.1007/s40435-019-00580-3 doi: 10.1007/s40435-019-00580-3
    [25] S. Samaddar, M. Dhar, P. Bhattacharya, Effect of fear on prey-predator dynamics: Exploring the role of prey refuge and additional food, Chaos, 30 (2020), 063129. https://doi.org/10.1063/5.0006968 doi: 10.1063/5.0006968
    [26] L. Y. Wu, H. Zheng, Hopf bifurcation in a delayed predator-prey system with asymmetric functional response and additional food, AIMS Math., 6 (2021), 12225–12244. https://doi.org/10.3934/math.2021708 doi: 10.3934/math.2021708
    [27] R. Arditi, L. R. Ginzburg, Coupling in predator-prey dynamics: ratio-dependence, J. Theor. Biol., 139 (1989), 311–326. https://doi.org/10.1016/S0022-5193(89)80211-5 doi: 10.1016/S0022-5193(89)80211-5
    [28] P. N. D. Srinivasu, B. Prasad, M. Venkatesulu, Biological control through provision of additional food to predators: a theoretical study, Theor. Popul. Biol., 72 (2007), 111–120. https://doi.org/10.1016/j.tpb.2007.03.011 doi: 10.1016/j.tpb.2007.03.011
    [29] D. Kumar, S. P. Chakrabarty, A predator-prey model with additional food supply to predators: dynamics and applications, J. Comp. Appl. Math., 37 (2018), 763–784. https://doi.org/10.1007/s40314-016-0369-x doi: 10.1007/s40314-016-0369-x
    [30] Z. J. Liu, R. H. Tan, L. S. Chen, Global stability in a periodic delayed predator-prey system, Appl. Math. Comput., 186 (2007), 389–403. https://doi.org/10.1016/j.amc.2006.07.123 doi: 10.1016/j.amc.2006.07.123
    [31] X. S. Liu, B. X. Dai, Dynamics of a generalized predator-prey model with delay and impulse via the basic reproduction number, Math. Meth. Appl. Sci., 42 (2019), 6878–6895. https://doi.org/10.1002/mma.5794 doi: 10.1002/mma.5794
    [32] S. Y. Li, Hopf bifurcation, stability switches and chaos in a prey-predator system with three stage structure and two time delays, Math. Biosci. Eng., 16 (2019), 6934–6961. https://doi.org/10.3934/mbe.2019348 doi: 10.3934/mbe.2019348
    [33] K. Manna, M. Banerjee, Stability of Hopf-bifurcating limit cycles in a diffusion-driven prey-predator system with Allee effect and time delay, Math. Biosci. Eng., 16 (2019), 2411–2446. https://doi.org/10.3934/mbe.2019121 doi: 10.3934/mbe.2019121
    [34] X. Jiang, R. Zhang, Z. K. She, Dynamics of a diffusive predator-prey system with ratio-dependent functional response and time delay, Int. J. Biomath., 13 (2020), 2050036. https://doi.org/10.1142/S1793524520500369 doi: 10.1142/S1793524520500369
    [35] Q. F. Tang, G. H. Zhang, Stability and Hopf bifurcations in a competitive tumour-immune system with intrinsic recruitment delay and chemotherapy, Math. Biosci. Eng., 18 (2021), 1941–1965. https://doi.org/10.3934/mbe.2021101 doi: 10.3934/mbe.2021101
    [36] T. K. Kar, S. Misra, B. Mukhopadhyay, A bioeconomic model of a ratio-dependent predator-prey system and optimal harvesting, J. Appl. Math. Comput., 22 (2006), 387–401. https://doi.org/10.1007/BF02896487 doi: 10.1007/BF02896487
    [37] H. Y. Zhao, X. X. Huang, X. B. Zhang, Hopf bifurcation and harvesting control of a bioeconomic plankton model with delay and diffusion terms, Phys. A., 421 (2015), 300–315. https://doi.org/10.1016/j.physa.2014.11.042 doi: 10.1016/j.physa.2014.11.042
    [38] X. Zhang, Q. L. Zhang, C. Liu, Z. Y. Xiang, Bifurcations of a singular prey-predator economic model with time delay and stage structure, Chaos Soliton. Fractals, 42 (2009), 1485–1494. https://doi.org/10.1016/j.chaos.2009.03.051 doi: 10.1016/j.chaos.2009.03.051
    [39] G. D. Zhang, L. L. Zhu, B. S. Chen, Hopf bifurcation and stability for a differential-algebraic biological economic system, Appl. Math. Comput., 217 (2010), 330–338. https://doi.org/10.1016/j.amc.2010.05.065 doi: 10.1016/j.amc.2010.05.065
    [40] K. Chakraborty, M. Chakraborty, T. K. Kar, Bifurcation and control of a bioeconomic model of a prey-predator system with a time delay, Nonlinear Anal-Hybrid., 5 (2011), 613–625. https://doi.org/10.1016/j.nahs.2011.05.004 doi: 10.1016/j.nahs.2011.05.004
    [41] B. S. Chen, J. J. Chen, Bifurcation and chaotic behavior of a discrete singular biological economic system, Appl. Math. Comput., 219 (2012), 2371–2386. https://doi.org/10.1016/j.amc.2012.07.043 doi: 10.1016/j.amc.2012.07.043
    [42] D. Pal, G. S. Mahaptra, G. P. Samanta, Optimal harvesting of prey-predator system with interval biological parameters: a bioeconomic model, Math. Biosci., 241 (2013), 181–187. https://doi.org/10.1016/j.mbs.2012.11.007 doi: 10.1016/j.mbs.2012.11.007
    [43] Y. Zhang, Q. L. Zhang, X. G. Yan, Complex dynamics in a singular Leslie-Gower predator-prey bioeconomic model with time delay and stochastic fluctuations, Phys. A., 404 (2014), 180–191. https://doi.org/10.1016/j.physa.2014.02.013 doi: 10.1016/j.physa.2014.02.013
    [44] X. Zhang, S. N. Song, J. H. Wu, Oscillations, fluctuation intensity and optimal harvesting of a bio-economic model in a complex habitat, J. Math. Anal. Appl., 436 (2016), 692–717. https://doi.org/10.1016/j.jmaa.2015.11.068 doi: 10.1016/j.jmaa.2015.11.068
    [45] C. W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources, Wiley, New York, 1976. https://doi.org/10.1137/1020117
    [46] C. H. Katz, A nonequilibrium marine predator-prey interaction, Ecology, 66 (1985), 1426–1438. https://doi.org/10.2307/1938005 doi: 10.2307/1938005
    [47] W. Stephen, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, New York, 2003. https://doi.org/10.1063/1.4822950
    [48] Q. Tang, G. Zhang, Stability and Hopf bifurcations in a competitive tumour-immune system with intrinsic recruitment delay and chemotherapy, Math. Biosci. Eng., 18 (2021), 1941–1965. https://doi.org/10.3934/mbe.2021101 doi: 10.3934/mbe.2021101
    [49] K. L. Cooke, Z. Grossman, Discrete delay, distributed delay and stability switches, J. Math. Anal. Appl., 86 (1982), 592–627. https://doi.org/10.1016/0022-247X(82)90243-8 doi: 10.1016/0022-247X(82)90243-8
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(700) PDF downloads(59) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog