Citation: Adil Yousif, Awad Ali. The impact of intervention strategies and prevention measurements for controlling COVID-19 outbreak in Saudi Arabia[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 8123-8137. doi: 10.3934/mbe.2020412
[1] | B. Ivorra, B. Martínez-López, J. M. Sánchez-Vizcaíno, Á. M. Ramos, Mathematical formulation and validation of the Be-FAST model for classical swine fever virus spread between and within farms, Ann. Oper. Res., 219 (2014), 25-47. doi: 10.1007/s10479-012-1257-4 |
[2] | D. Cucinotta, M. Vanelli, WHO Declares COVID-19 a Pandemic, Acta bio-medica: Atenei Parmensis, 91 (2020), 157. |
[3] | X. Rong, L. Yang, H. Chu, M. Fan, Effect of delay in diagnosis on transmission of COVID-19, Math. Biosci. Eng., 17 (2020), 2725-2740. doi: 10.3934/mbe.2020149 |
[4] | S. H. Ebrahim, Q. A. Ahmed, E. Gozzer, P. Schlagenhauf, Z. A. Memish, Covid-19 and community mitigation strategies in a pandemic, BMJ, 368 (2020), m1066. |
[5] | S. Zhang, M. Diao, W. Yu, L. Pei, Z. Lin, D. Chen, Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: A data-driven analysis, Int. J. Infect. Dis., 93 (2020), 201-204. doi: 10.1016/j.ijid.2020.02.033 |
[6] | H. Tian, Y. Li, Y. Liu, M. U. Kraemer, B. Chen, J. Cai, et al., Early evaluation of Wuhan City travel restrictions in response to the 2019 novel coronavirus outbreak, medRxiv (2020). |
[7] | C. Rothe, M. Schunk, P. Sothmann, G. Bretzel, G. Froeschl, C. Wallrauch, et al., Transmission of 2019-nCoV infection from an asymptomatic contact in Germany, N. Engl. J. Med., 382 (2020), 970-971. doi: 10.1056/NEJMc2001468 |
[8] | D. Fanelli, F. Piazza, Analysis and forecast of COVID-19 spreading in China, Italy and France, Chaos, Solitons Fractals, 134 (2020), 109761. doi: 10.1016/j.chaos.2020.109761 |
[9] | L. Di Domenico, G. Pullano, G. Pullano, N. Hens, V. Colizza, Expected impact of school closure and telework to mitigate COVID-19 epidemic in France, EPIcx Lab, 15 (2020). |
[10] | P. Yang, J. Qi, S. Zhang, X. Wang, G. Bi, Y. Yang, et al., Feasibility Study of Mitigation and Suppression Intervention Strategies for Controlling COVID-19 Outbreaks in London and Wuhan, Medrxiv, (2020). |
[11] | A. Pan, L. Liu, C. Wang, H. Guo, X. Hao, Q. Wang, et al., Association of public health interventions with the epidemiology of the COVID-19 outbreak in Wuhan, China, Jama, 323 (2020), 1915-1923. doi: 10.1001/jama.2020.6130 |
[12] | S. Flaxman, S. Mishra, A. Gandy, H. J. T. Unwin, T. A. Mellan, H. Coupland, et al., Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe, Nature, 584 (2020), 257-261. doi: 10.1038/s41586-020-2405-7 |
[13] | E. A. Iboi, O. O. Sharomi, C. N. Ngonghala, A. B. Gumel, Mathematical Modeling and Analysis of COVID-19 pandemic in Nigeria, Math. Biosci. Eng., 17 (2020), 7192-7220. |
[14] | R. M. Anderson, H. Heesterbeek, D. Klinkenberg, T. D. Hollingsworth, How will country-based mitigation measures influence the course of the COVID-19 epidemic?, Lancet, 395 (2020), 931-934. doi: 10.1016/S0140-6736(20)30567-5 |
[15] | M. Batista, Estimation of the final size of the COVID-19 epidemic, medRxiv, (2020), 2020.02.16.20023606. |
[16] | Y. Zhang, C. You, Z. Cai, J. Sun, W. Hu, X.-H. Zhou, Prediction of the COVID-19 outbreak based on a realistic stochastic model, medRxiv, (2020), 2002.03.10.20033803. |
[17] | S. He, S. Tang, L. Rong, A discrete stochastic model of the COVID-19 outbreak: Forecast and control, Math. Biosci. Eng., 17 (2020), 2792-2804. doi: 10.3934/mbe.2020153 |
[18] | L. Jia, K. Li, Y. Jiang, X. Guo, Prediction and analysis of Coronavirus Disease 2019, arXiv preprint arXiv, (2020), 2003.05447. |
[19] | Z. Liu, P. Magal, O. Seydi, G. Webb, Predicting the cumulative number of cases for the COVID-19 epidemic in China from early data, arXiv preprint arXiv, (2020), 2002.12298. |
[20] | L. Peng, W. Yang, D. Zhang, C. Zhuge, L. Hong, Epidemic analysis of COVID-19 in China by dynamical modeling, arXiv preprint arXiv, (2020), 2002.06563. |
[21] | J. F. Rabajante, Insights from early mathematical models of 2019-nCoV acute respiratory disease (COVID-19) dynamics, arXiv preprint arXiv, (2020), 2002.05296. |
[22] | A. Teslya, T. M. Pham, N. G. Godijk, M. E. Kretzschmar, M. C. Bootsma, G. Rozhnova, Impact of self-imposed prevention measures and short-term government intervention on mitigating and delaying a COVID-19 epidemic, Available at SSRN 3555213 (2020). |
[23] | J. Dehning, J. Zierenberg, F. P. Spitzner, M. Wibral, J. P. Neto, M. Wilczek, et al., Inferring COVID-19 spreading rates and potential change points for case number forecasts, arXiv preprint arXiv, (2020), 2004.01105. |
[24] | I. Frost, G. Osena, J. Craig, S. Hauck, E. Kalanxhi, O. Gatalo, et al., COVID-19 in Middle Africa: National Projections of Total and Severe Infections Under Different Lockdown Scenarios, (2020). |
[25] | D. Alboaneen, B. Pranggono, D. Alshammari, N. Alqahtani, R. Alyaffer, Predicting the Epidemiological Outbreak of the Coronavirus Disease 2019 (COVID-19) in Saudi Arabia, Int. J. Environ. Res. Public Health, 17 (2020), 4568. doi: 10.3390/ijerph17124568 |
[26] | S. Yezli, A. Khan, COVID-19 social distancing in the Kingdom of Saudi Arabia: Bold measures in the face of political, economic, social and religious challenges, Travel Med. Infect. Dis., (2020), 101692. |
[27] | M. Barry, M. Al Amri, Z. A. Memish, COVID-19 in the Shadows of MERS-CoV in the Kingdom of Saudi Arabia, JEGH, 10 (2020), 1-3. doi: 10.2991/jegh.k.200218.003 |
[28] | M. Willman, D. Kobasa, J. Kindrachuk, A comparative analysis of factors influencing two outbreaks of Middle Eastern respiratory syndrome (MERS) in Saudi Arabia and South Korea, Viruses, 11 (2019), 1119. doi: 10.3390/v11121119 |
[29] | COVID 19 Dashboard: Saudi Arabia, 2020, available from: https://covid19.moh.gov.sa/. |
[30] | John Hopkins University and Medince, Coronavirus COVID-19 Global Cases, 2020, available from: https://coronavirus.jhu.edu/map.html. |
[31] | M. Roser, H. Ritchie, E. Ortiz-Ospina, J. Hasell, Coronavirus Pandemic (COVID-19), Our World in Data, 2020. Available from: https://ourworldindata.org/coronavirus. |
[32] | D. He, J. Dushoff, T. Day, J. Ma, D. J. D. Earn, Inferring the causes of the three waves of the 1918 influenza pandemic in England and Wales, Proc. R. Soc. B, 280 (2013), 20131345. doi: 10.1098/rspb.2013.1345 |
[33] | Q. Lin, S. Zhao, D. Gao, Y. Lou, S. Yang, S. S. Musa, et al., A conceptual model for the outbreak of Coronavirus disease 2019 (COVID-19) in Wuhan, China with individual reaction and governmental action, Int. J. Infect. Dis., 2020. |
[34] | Saudi Unified National plateform, Saudi Reports and Statistics, (2019), available from: https://www.my.gov.sa/wps/portal/snp/aboutksa/saudiReportsAndStatistics. |
[35] | S. Zhao, Q. Lin, J. Ran, S. S. Musa, G. Yang, W. Wang, et al., Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak, Int. J. Infect. Dis., 92 (2020), 214-217. doi: 10.1016/j.ijid.2020.01.050 |
[36] | B. Ivorra, M. R. Ferrández, M. Vela-Pérez, A. Ramos, Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China, Commun. Nonlinear Sci. Numer. Simul., 88 (2020), 105303. |
[37] | S. M. S. Elsheikh, M. K. Abbas, M. A. Bakheet, A. Degoot, A mathematical model for the transmission of Corona Virus Disease (COVID-19) in Sudan, (2020). |
[38] | T. Piasecki, P. B. Mucha, M. Rosińska, A new SEIR type model including quarantine effects and its application to analysis of Covid-19 pandemia in Poland in March-April 2020, arXiv preprint arXiv, (2020), 2005.14532. |
[39] | Å. Björck, Numerical methods for least squares problems, SIAM. 1996. |
[40] | S. Van Huffel, P. Lemmerling, Total least squares and errors-in-variables modeling: analysis, algorithms and applications. Springer Science & Business Media, 2013. |
[41] | G. Kemmer, S. Keller, Nonlinear least-squares data fitting in Excel spreadsheets, Nat. Protoc., 5 (2010), 267. doi: 10.1038/nprot.2009.182 |
[42] | A. R. Tuite, D. N. Fisman, A. L. Greer, Mathematical modelling of COVID-19 transmission and mitigation strategies in the population of Ontario, Canada, CMAJ, 192 (2020), E497-E505. doi: 10.1503/cmaj.200476 |
[43] | R. Chowdhury, K. Heng, M. S. R. Shawon, G. Goh, D. Okonofua, C. Ochoa-Rosales, et al., Dynamic interventions to control COVID-19 pandemic: a multivariate prediction modelling study comparing 16 worldwide countries, Eur. J. Epidemiol., 35 (2020), 389-399. doi: 10.1007/s10654-020-00649-w |
[44] | N. Ferguson, D. Laydon, G. Nedjati Gilani, N. Imai, K. Ainslie, M. Baguelin, et al., Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand, (2020). |
[45] | S. L. Chang, N. Harding, C. Zachreson, O. M. Cliff, M. Prokopenko, Modelling transmission and control of the COVID-19 pandemic in Australia, arXiv preprint arXiv, (2020), 2003.10218. |