Citation: Haihua Cui, Qianjin Wang, Dengfeng Dong, Hao Wei, Yihua Zhang. Fast outlier removing method for point cloud of microscopic 3D measurement based on social circle[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 8138-8151. doi: 10.3934/mbe.2020413
[1] | M. Berger, A. Tagliasacchi, L. Seversky, P. Alliez, J. Levine, A. Sharf, et al., State of the art in surface reconstruction from point clouds, Eurographics 2014 - State of the Art Reports, 1 (2014), 161-185. |
[2] | R. Leach, Optical measurement of surface topography, Springer, Berlin, 2011. |
[3] | S. Sotoodeh, Hierarchical clustered outlier detection in laser scanner point clouds, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., 36 (2007), 383-388. |
[4] | J. Yu, M. Wei, J. Qin, Feature-preserving mesh denoising via normal guided quadric error metrics, Opt. Lasers Eng., 62 (2014), 57-68. doi: 10.1016/j.optlaseng.2014.05.002 |
[5] | X. F. Han, J. Jin, M. J. Wang, W. Wei, L. Gao, L. Xiao, A review of algorithms for filtering the 3D point cloud, Signal Process. Image Commun., 57 (2017), 103-112. doi: 10.1016/j.image.2017.05.009 |
[6] | Y. Wang, H. Y. Feng, Outlier detection for scanned point clouds using majority voting, Comput.-Aided Des., 62 (2015), 31-43. doi: 10.1016/j.cad.2014.11.004 |
[7] | A. Belyaev, Y. Ohtake, A comparison of mesh smoothing methods, Israel-Korea Bi-national conference on geometric modeling and computer graphics, 2 (2003), 83-87. |
[8] | T. Jones, F. Durand, M. Desbrun, Non-iterative, feature-preserving mesh smoothing, ACM SIGGRAPH 2003 Papers, 22 (2003), 943-949. |
[9] | B. Skinner, T. Vidal-Calleja, J. V. Miro, F. De Bruijn, R. Falque, 3D point cloud upsampling for accurate reconstruction of dense 2.5 D thickness maps, Australasian Conference on Robotics and Automation, ACRA, 2014. |
[10] | V. Morell, S. Orts, M. Cazorla, J. Garcia-Rodriguez, Geometric 3D point cloud compression, Pattern Recognit. Lett., 50 (2014), 55-62. doi: 10.1016/j.patrec.2014.05.016 |
[11] | R. Rusu, Z. Marton, N. Blodow, M. Dolha, M. Beetz, Towards 3D point cloud based object maps for household environments, Rob. Auton. Syst., 56 (2008), 927-941. doi: 10.1016/j.robot.2008.08.005 |
[12] | S. Fleishman, I. Drori, D. Cohen-Or, Bilateral mesh denoising, ACM SIGGRAPH 2003 Papers. 22 (2003), 950-953. |
[13] | T. Pachur, J. Rieskamp, R. Hertwig, The social circle heuristic: Fast and frugal decisions based on small samples, Proceedings of the Annual Meeting of the Cognitive Science Society, 26 (2004), 1077-1082. |
[14] | G. Li, Z. Pan, B. Xiao, L. Huang, Community discovery and importance analysis in social network, Intell. Data Analysis, 18 (2014), 495-510. doi: 10.3233/IDA-140653 |
[15] | S. K. Nayar, Y. Nakagawa, Shape from focus, IEEE Trans. Pattern Anal. Mach. Intell., 16 (1994), 824-831. doi: 10.1109/34.308479 |
[16] | J. He, R. Zhou, Z. Hong, Modified fast climbing search auto-focus algorithm with adaptive step size searching technique for digital camera, IEEE Trans. Consum. Electron., 49 (2003), 257-262. doi: 10.1109/TCE.2003.1209511 |
[17] | J. Leskovec, J. Mcauley, Learning to discover social circles in ego networks, Adv. Neural Inf. Process. Syst., 25 (2012), 539-547. |
[18] | M. Wang, W. Zuo, Y. Wang, An improved density peaks-based clustering method for social circle discovery in social networks, Neurocomputing, 179 (2012), 219-227. |
[19] | S. Wang, F. Wang, Y. Chen, C. Liu, Z. Li, X. Zhang, Exploiting social circle broadness for influential spreaders identification in social networks. World Wide Web, 18 (2015), 681-705. doi: 10.1007/s11280-014-0277-1 |