Research article

Optimal control and stability analysis of an age-structured SEIRV model with imperfect vaccination

  • Received: 19 April 2023 Revised: 04 June 2023 Accepted: 11 June 2023 Published: 30 June 2023
  • Vaccination programs are crucial for reducing the prevalence of infectious diseases and ultimately eradicating them. A new age-structured SEIRV (S-Susceptible, E-Exposed, I-Infected, R-Recovered, V-Vaccinated) model with imperfect vaccination is proposed. After formulating our model, we show the existence and uniqueness of the solution using semigroup of operators. For stability analysis, we obtain a threshold parameter $ R_0 $. Through rigorous analysis, we show that if $ R_0 < 1 $, then the disease-free equilibrium point is stable. The optimal control strategy is also discussed, with the vaccination rate as the control variable. We derive the optimality conditions, and the form of the optimal control is obtained using the adjoint system and sensitivity equations. We also prove the uniqueness of the optimal controller. To visually illustrate our theoretical results, we also solve the model numerically.

    Citation: Manoj Kumar, Syed Abbas, Abdessamad Tridane. Optimal control and stability analysis of an age-structured SEIRV model with imperfect vaccination[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 14438-14463. doi: 10.3934/mbe.2023646

    Related Papers:

  • Vaccination programs are crucial for reducing the prevalence of infectious diseases and ultimately eradicating them. A new age-structured SEIRV (S-Susceptible, E-Exposed, I-Infected, R-Recovered, V-Vaccinated) model with imperfect vaccination is proposed. After formulating our model, we show the existence and uniqueness of the solution using semigroup of operators. For stability analysis, we obtain a threshold parameter $ R_0 $. Through rigorous analysis, we show that if $ R_0 < 1 $, then the disease-free equilibrium point is stable. The optimal control strategy is also discussed, with the vaccination rate as the control variable. We derive the optimality conditions, and the form of the optimal control is obtained using the adjoint system and sensitivity equations. We also prove the uniqueness of the optimal controller. To visually illustrate our theoretical results, we also solve the model numerically.



    加载中


    [1] S. J. Thomas, E. D. Moreira, N. Kitchin, J. Absalon, A. Gurtman, S. Lockhart, et al., Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine through 6 months, N. Engl. J. Med., 385 (2021), 1761–1773. https://doi.org/10.1056/NEJMoa2110345 doi: 10.1056/NEJMoa2110345
    [2] C. Menni, A. May, L. Polidori, P. Louca, J. Wolf, J. Capdevila, et al., COVID-19 vaccine waning and effectiveness and side-effects of boosters: A prospective community study from the ZOE COVID study, Lancet Infect. Dis., 22 (2022), 1002–1010. https://doi.org/10.1016/S1473-3099(22)00146-3 doi: 10.1016/S1473-3099(22)00146-3
    [3] J. Scott, A. Richterman, M. Cevik, Covid-19 vaccination: evidence of waning immunity is overstated, BMJ, 374 (2021). https://doi.org/10.1136/bmj.n2320
    [4] N. Andrews, J. Stowe, F. Kirsebom, F. Kirsebom, T. Rickeard, E. Gallagher, et al., Covid-19 vaccine effectiveness against the Omicron (B. 1.1. 529) variant, N. Engl. J. Med., 386 (2022), 1532–1546. https://doi.org/10.1056/NEJMoa2119451 doi: 10.1056/NEJMoa2119451
    [5] W. O. Kermack, A. G. Mckendrick, Contributions to the mathematical theory of epidemics, Proc. R. Soc. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [6] W. O. Kermack, A. G. Mckendrick, Contributions to the mathematical theory of epidemics. II.—The problem of endemicity, Proc. R. Soc. A, 138 (1932), 55–83. https://doi.org/10.1098/rspa.1932.0171 doi: 10.1098/rspa.1932.0171
    [7] W. O. Kermack, A. G. Mckendrick, Contributions to the mathematical theory of epidemics III—The problem of endemicity, Proc. R. Soc. A, 141 (1933), 94–122. https://doi.org/10.1098/rspa.1933.0106 doi: 10.1098/rspa.1933.0106
    [8] Z. Zhang, S. Kundu, J. P. Tripathi, S. Bugalia, Stability and Hopf bifurcation analysis of an SVEIR epidemic model with vaccination and multiple time delays, Chaos Solitons Fractals, 131 (2020), 109483. https://doi.org/10.1016/j.chaos.2019.109483 doi: 10.1016/j.chaos.2019.109483
    [9] K. Hattaf, N. Yousfi, A. Tridane Mathematical analysis of a virus dynamics model with general incidence rate and cure rate, Nonlinear Anal. Real World Appl., 13 (2012), 1866–1872. https://doi.org/10.1016/j.nonrwa.2011.12.015 doi: 10.1016/j.nonrwa.2011.12.015
    [10] U. Kumar, P. S. Mandal, J. P. Tripathi, V. P. Bajiya, S. Bugalia, SIRS epidemiological model with ratio‐dependent incidence: Influence of preventive vaccination and treatment control strategies on disease dynamics, Math. Methods Appl. Sci., 44 (2021), 14703–14732. https://doi.org/10.1002/mma.7737 doi: 10.1002/mma.7737
    [11] S. Tyagi, S. C. Martha, S. Abbas, A. Debbouche, Mathematical modeling and analysis for controlling the spread of infectious diseases, Chaos Solitons Fractals, 144 (2021), 110707. https://doi.org/10.1016/j.chaos.2021.110707 doi: 10.1016/j.chaos.2021.110707
    [12] S. Tyagi, S. Gupta, S. Abbas, K. P. Das, B. Riadh, Analysis of infectious disease transmission and prediction through SEIQR epidemic model, Nonauton. Dyn. Syst., 8 (2021), 75–86. https://doi.org/10.1515/msds-2020-0126 doi: 10.1515/msds-2020-0126
    [13] M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Giardini editori e stampatori in Pisa, 1995.
    [14] H. R. Thieme, C. Castillo-Chavez, How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS?, SIAM J. Appl. Math., 53 (1993), 1447–1479. https://doi.org/10.1137/0153068 doi: 10.1137/0153068
    [15] F. Brauer, Age of infection in epidemiology models, Electron. J. Differ. Equations, 12 (2004), 29–37.
    [16] G. F. Webb, Population models structured by age, size, and spatial position, in Structured Population Models in Biology and Epidemiology, Springer, (2008), 1–49. https://doi.org/10.1007/978-3-540-78273-5_1
    [17] J. Arino, K. L. Cooke, P. Driessche, J. Velasco-Hernandez, An epidemiology model that includes a leaky vaccine with a general waning function, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 479. https://doi.org/10.3934/dcdsb.2004.4.479 doi: 10.3934/dcdsb.2004.4.479
    [18] J. Mohammed-Awel, E. Numfor, R. Zhao, S. Lenhart, A new mathematical model studying imperfect vaccination: Optimal control analysis, J. Math. Anal. Appl., 500 (2021), 125132. https://doi.org/10.1016/j.jmaa.2021.125132 doi: 10.1016/j.jmaa.2021.125132
    [19] H. Tahir, A. Khan, A. Din, A. Khan, G. Zaman, Optimal control strategy for an age-structured SIR endemic model, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 2535. https://doi.org/10.3934/dcdss.2021054 doi: 10.3934/dcdss.2021054
    [20] K. Li, H. Zhang, G. Zhu, M. Small, X. Fu, Suboptimal control and targeted constant control for semi-random epidemic networks, IEEE Trans. Syst. Man Cybernet., 51 (2019), 2602–2610. https://doi.org/10.1109/TSMC.2019.2916859 doi: 10.1109/TSMC.2019.2916859
    [21] W. Lv, Q. Ke, K. Li, Dynamical analysis and control strategies of an SIVS epidemic model with imperfect vaccination on scale-free networks, Nonlinear Dyn., 99 (2020), 1507–1523. https://doi.org/10.1007/s11071-019-05371-1 doi: 10.1007/s11071-019-05371-1
    [22] C. Xu, W. Zhang, C. Aouiti, Z. Liu, L. Yao, Bifurcation insight for a fractional‐order stage‐structured predator–prey system incorporating mixed time delays, Math. Methods Appl. Sci., 46 (2023), 9103–9118. https://doi.org/10.1002/mma.9041 doi: 10.1002/mma.9041
    [23] C. Xu, Z. Liu, P. Li, J. Yan, L. Yao, Bifurcation mechanism for fractional-order three-triangle multi-delayed neural networks, Neural Process. Lett., 2022 (2022), 1–27. https://doi.org/10.1007/s11063-022-11130-y doi: 10.1007/s11063-022-11130-y
    [24] W. Ou, C. Xu, Q. Cui, Z. Liu, Y. Pang, M. Farman, S. Ahmad, A. Zeb, Mathematical study on bifurcation dynamics and control mechanism of tri‐neuron bidirectional associative memory neural networks including delay, Methods Appl. Sci., (2023). https://doi.org/10.1002/mma.9347
    [25] C. Xu, M. ur Rahman, D. Baleanu, On fractional-order symmetric oscillator with offset-boosting control, Nonlinear Anal. Modell. Control, 27 (2022), 994–1008. https://doi.org/10.15388/namc.2022.27.28279 doi: 10.15388/namc.2022.27.28279
    [26] M. Kumar, S. Abbas, Analysis of steady state solutions to an age structured SEQIR model with optimal vaccination, Math. Meth. Appl. Sci., 455 (2022), 1–18.
    [27] X. C. Duan, H. Cheng, M. Martcheva, S. Yuan, Dynamics of an Age Structured Heroin Transmission Model with Imperfect Vaccination, Internat. J. Bifur. Chaos, 31 (2021), 2150157. https://doi.org/10.1142/S0218127421501571 doi: 10.1142/S0218127421501571
    [28] M. Kumar, S. Abbas, Age-Structured SIR model for the spread of infectious diseases through indirect contacts, Mediterr. J. Math., 19 (2022), 1–18. https://doi.org/10.1007/s00009-021-01925-z doi: 10.1007/s00009-021-01925-z
    [29] S. Bentout, A. Tridane, S. Djilali, T. M. Touaoula, Age-structured modeling of COVID-19 epidemic in the USA, UAE and Algeria, Alexandria Eng. J., 60 (2021), 401–411. https://doi.org/10.1016/j.aej.2020.08.053 doi: 10.1016/j.aej.2020.08.053
    [30] M. Kumar, S. Abbas, Global dynamics of an age-structured model for HIV viral dynamics with latently infected T cells, Math. Comput. Simul., 198 (2022), 237–252. https://doi.org/10.1016/j.matcom.2022.02.035 doi: 10.1016/j.matcom.2022.02.035
    [31] K. R. Fister, S. Lenhart, Optimal control of a competitive system with age-structure, J. Math. Anal. Appl., 291 (2004), 526–537. https://doi.org/10.1016/j.jmaa.2003.11.031 doi: 10.1016/j.jmaa.2003.11.031
    [32] K. R. Fister, H. Gaff, S. Lenhart, E. Numfor, E. Schaefer, J. Wang, Optimal control of vaccination in an age-structured cholera model, in Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases, (2016), 221–248. https://doi.org/10.1007/978-3-319-40413-4_14
    [33] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 2012.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1319) PDF downloads(113) Cited by(2)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog