Research article Special Issues

A non-standard finite-difference-method for a non-autonomous epidemiological model: analysis, parameter identification and applications


  • Received: 16 March 2023 Revised: 17 May 2023 Accepted: 19 May 2023 Published: 05 June 2023
  • In this work, we propose a new non-standard finite-difference-method for the numerical solution of the time-continuous non-autonomous susceptible-infected-recovered model. For our time-discrete numerical solution algorithm, we prove preservation of non-negativity and show that the unique time-discrete solution converges linearly towards the time-continuous unique solution. In addition to that, we introduce a parameter identification algorithm for the susceptible-infected-recovered model. Finally, we provide two numerical examples to stress our theoretical findings.

    Citation: Benjamin Wacker, Jan Christian Schlüter. A non-standard finite-difference-method for a non-autonomous epidemiological model: analysis, parameter identification and applications[J]. Mathematical Biosciences and Engineering, 2023, 20(7): 12923-12954. doi: 10.3934/mbe.2023577

    Related Papers:

  • In this work, we propose a new non-standard finite-difference-method for the numerical solution of the time-continuous non-autonomous susceptible-infected-recovered model. For our time-discrete numerical solution algorithm, we prove preservation of non-negativity and show that the unique time-discrete solution converges linearly towards the time-continuous unique solution. In addition to that, we introduce a parameter identification algorithm for the susceptible-infected-recovered model. Finally, we provide two numerical examples to stress our theoretical findings.



    加载中


    [1] J. D. Murray, Mathematical Biology I: An Introduction, 3$^{rd}$ edition, Springer-Verlag, New York, 2002. https://doi.org/10.1007/b98868
    [2] X. H. Tang, X. Zou, Global attractivity of non-autonomous Lotka-Volterra competition system without instantaneous negative feedback, J. Differ. Equations, 192 (2003), 502–535. https://doi.org/10.1016/S0022-0396(03)00042-1 doi: 10.1016/S0022-0396(03)00042-1
    [3] B. Wacker, J. C. Schlüter, Qualitative analysis of two systems of nonlinear first-order ordinary differential equations for biological systems, Math. Meth. Appl. Sci., 45 (2022), 4597–4624. https://doi.org/10.1002/mma.8056 doi: 10.1002/mma.8056
    [4] V. Srivastava, E. M. Takyi, R. D. Parshad, The effect of "fear" on two species competition, Math. Biosci. Eng., 20 (2023), 8814–8855. https://doi.org/10.3934/mbe.2023388 doi: 10.3934/mbe.2023388
    [5] H. A. Ashi, D. M. Alahmadi, A mathematical model of brain tumor, Math. Meth. Appl. Sci., 46 (2023), 10137–10150. https://doi.org/10.1002/mma.9107 doi: 10.1002/mma.9107
    [6] M. Feinberg, Foundations of Chemical Reaction Network Theory, 1$^{st}$ edition, Springer-Verlag, Cham, 2019. https://doi.org/10.1007/978-3-030-03858-8
    [7] M. Mincheva, D. Siegel, Nonnegativity and positiveness of solutions to mass action reaction-diffusion systems, J. Math. Chem., 42 (2007), 1135–1145. https://doi.org/10.1007/s10910-007-9292-0 doi: 10.1007/s10910-007-9292-0
    [8] L. Formaggia, A. Scotti, Positivity and conservation properties of some integration schemes for mass action kinetics, SIAM J. Numer. Anal., 49 (2011), 1267–1288. https://doi.org/10.1137/100789592 doi: 10.1137/100789592
    [9] M. Martcheva, An Introduction to Mathematical Epidemiology, 1$^{st}$ edition, Springer-Verlag, New York, 2015. https://doi.org/10.1007/978-1-4899-7612-3
    [10] F. Brauer, Some simple epidemic models, Math. Biosci. Eng., 3 (2006), 1–15. https://doi.org/10.3934/mbe.2006.3.1
    [11] F. Brauer, Discrete epidemic models, Math. Biosci. Eng., 7 (2010), 1–15. https://doi.org/10.3934/mbe.2010.7.1
    [12] T. Cuchta, S. Streipert, Dynamic Gompertz model, Appl. Math. Inf. Sci., 14 (2020), 9–17. https://doi.org/10.18576/amis/140102 doi: 10.18576/amis/140102
    [13] B. Wacker, J. C. Schlüter, A cubic nonlinear population growth model for single species: theory, an explicit-implicit solution algorithm and applications, Adv. Differ. Equations, 236 (2021), 1–29. https://doi.org/10.1186/s13662-021-03399-5 doi: 10.1186/s13662-021-03399-5
    [14] M. T. Hoang, Positivity and boundedness preserving nonstandard finite difference schemes for solving Volterra's population growth model, Math. Comput. Simul., 199 (2022), 359–373. https://doi.org/10.1016/j.matcom.2022.04.003 doi: 10.1016/j.matcom.2022.04.003
    [15] B. Wacker, J. C. Schlüter, Time-continuous and time-discrete SIR models revisited: theory and applications, Adv. Differ. Equations, 556 (2020), 1–44. https://doi.org/10.1186/s13662-020-02995-1
    [16] W. Kermack, A. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [17] R. Ross, An application of the theory of probabilities to the study of a priori pathometry - Part I, Proc. R. Soc. A, 92 (1916), 204–230. https://doi.org/10.1098/rspa.1916.0007 doi: 10.1098/rspa.1916.0007
    [18] R. Ross, H. Hudson, An application of the theory of probabilities to the study of a priori pathometry - Part II, Proc. R. Soc. A, 93 (1917), 212–225. https://doi.org/10.1098/rspa.1917.0014 doi: 10.1098/rspa.1917.0014
    [19] H. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653. https://doi.org/10.1137/S0036144500371907 doi: 10.1137/S0036144500371907
    [20] F. Brauer, C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology, 2$^{nd}$ edition, Springer-Verlag, New York, 2012. https://doi.org/10.1007/978-1-4614-1686-9
    [21] M. Bohner, S. Streipert, The SIS-model on time scales, Pliska Stud. Math., 26 (2016), 11–28. Available from: http://hdl.handle.net/10525/3552.
    [22] M. Bohner, S. Streipert, D. F. M. Torres, Exact solution to a dynamic SIR model, Nonlinear Anal.: Hybrid Syst., 32 (2019), 228–238. https://doi.org/10.1016/j.nahs.2018.12.005 doi: 10.1016/j.nahs.2018.12.005
    [23] N. S. Barlow, S. J. Weinstein, Accurate closed-form solution of the SIR epidemic model, Phys. D, 408 (2020), 1–6. https://doi.org/10.1016/j.physd.2020.132540 doi: 10.1016/j.physd.2020.132540
    [24] F. Ndaïrou, I. Area, J. J. Nieto, D. F. M. Torres, Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan, Chaos, Solitons Fractals, 135 (2020), 1–6. https://doi.org/10.1016/j.chaos.2020.109846 doi: 10.1016/j.chaos.2020.109846
    [25] Z. Chen, L. Feng, H. A. Lay, K. Furati, A. Khaliq, SEIR model with unreported infected population and dynamic parameters for the spread of COVID-19, Math. Comput. Simul., 198 (2022), 31–46. https://doi.org/10.1016/j.matcom.2022.02.025 doi: 10.1016/j.matcom.2022.02.025
    [26] B. Wacker, J. C. Schüter, An age- and sex-structured SIR model: theory and an explicit-implicit numerical solution algorithm, Math. Biosci. Eng., 17 (2020), 5752–5801. https://doi.org/10.3934/mbe.2020309 doi: 10.3934/mbe.2020309
    [27] C. Xu, Y. Yu, Y. Q. Chen, Z. Lu, Forecast analysis of the epidemics trend of COVID-19 in the USA by a generalized fractional-order SEIR model, Nonlinear Dyn., 101 (2020), 1621–1634. https://doi.org/10.1007/s11071-020-05946-3 doi: 10.1007/s11071-020-05946-3
    [28] T. Marinov, R. S. Marinova, Inverse problem for adaptive SIR model: application to COVID-19 in Latin America, Infect. Dis. Modell., 7 (2021), 134–148. https://doi.org/10.1016/j.idm.2021.12.001 doi: 10.1016/j.idm.2021.12.001
    [29] T. Marinov, R. S. Marinova, Adaptive SIR model with vaccination: simultaneous identification of rates and functions illustrated with COVID-19, Sci. Rep., 12 (2022), 1–13. https://doi.org/10.1038/s41598-022-20276-7 doi: 10.1038/s41598-022-20276-7
    [30] A. Comunian, R. Gaburro, M. Giudici, Inversion of a SIR-based model: a critical analysis about the application to COVID-19 epidemic, Phys. D, 413 (2020), 1–6. https://doi.org/10.1016/j.physd.2020.132674 doi: 10.1016/j.physd.2020.132674
    [31] M. Newman, Networks, 2$^{nd}$ edition, Oxford University Press, Oxford, 2018.
    [32] C. J. Silva, G. Cantin, C. Cruz, R. Fonseca-Pinto, R. Passadouru, E. Soares dos Santos, et al., Complex network model for COVID-19: human behavior, pseudo-periodic solutions and multiple epidemic waves, J. Math. Anal. Appl., 514 (2022), 1–25. https://doi.org/10.1016/j.jmaa.2021.125171 doi: 10.1016/j.jmaa.2021.125171
    [33] C. Liu, X. X. Zhan, Z. K. Zhang, G. Q. Sun, P. M. Hui, How events determine spreading patterns: information transmission via internal and external influences on social networks, New J. Phys., 17 (2015), 1–11. https://doi.org/10.1088/1367-2630/17/11/113045 doi: 10.1088/1367-2630/17/11/113045
    [34] Z. K. Zhang, C. Liu, X. X. Zhan, X. Li, C. X. Zhang, Y. C. Zhang, Dynamics of information diffusion and its applications on complex networks, Phys. Rep., 651 (2016), 1–34. https://doi.org/10.1016/j.physrep.2016.07.002 doi: 10.1016/j.physrep.2016.07.002
    [35] X. X. Zhan, C. Liu, G. Zhou, Z. K. Zhang, G. Q. Sun, J. J. H. Zhu, et al., Coupling dynamics of epidemic spreading and information diffusion on complex networks, Appl. Math. Comput., 332 (2018), 437–448. https://doi.org/10.1016/j.amc.2018.03.050 doi: 10.1016/j.amc.2018.03.050
    [36] B. N. Oreshkin, D. Carpov, N. Chapados, Y. Bengio, N-BEATS: neural basis expansion analysis for interpretable time series forecasting, preprint, arXiv: 1905.10437.
    [37] Y. Shi, L. Li, J. Yang, Y. Wang, S. Hao, Center-based transfer feature learning with classifier adaptation for surface defect recognition, Mech. Syst. Signal Process., 188 (2023), 110001. https://doi.org/10.1016/j.ymssp.2022.110001 doi: 10.1016/j.ymssp.2022.110001
    [38] W. Qi, H. Fan, H. R. Karimi, H. Su, An adaptive reinforcement learning-based multimodal data fusion framework for human-robot confrontation gaming, Neural Netw., 164 (2023). https://doi.org/10.1016/j.neunet.2023.04.043
    [39] R. E. Mickens, P. M. Jordan, A positivity-preserving nonstandard finite difference scheme for the damped wave equation, Numer. Methods Partial Differ. Equations, 20 (2004), 639–649. https://doi.org/10.1002/num.20003 doi: 10.1002/num.20003
    [40] S. Nüßlein, H. Ranocha, D. I. Ketcheson, Positivity-preserving adaptive Runge-Kutta methods, Commun. Appl. Math. Comput. Sci., 16 (2021), 155–179. https://doi.org/10.2140/camcos.2021.16.155 doi: 10.2140/camcos.2021.16.155
    [41] R. E. Mickens, Nonstandard Finite Difference Models Of Differential Equations, 1$^{st}$ edition, World Scientific, Singapore, 1993. https://doi.org/10.1142/2081
    [42] D. S. Harned, D. D. Schnack, Semi-implicit method for long time scale magnetohydrodynamic computations in three dimensions, J. Comput. Phys., 65 (1986), 57–70. https://doi.org/10.1016/0021-9991(86)90004-5 doi: 10.1016/0021-9991(86)90004-5
    [43] J. W. Eaton, D. Bateman, S. Hauberg, R. Wehbring, GNU Octave Version 6.1.0 Manual: A High-Level Interactive Language For Numerical Computations, 2020. Available from: https://www.gnu.org/software/octave/doc/v6.1.0/.
    [44] John Hopkins University, COVID-19 data repository by the center for systems science and engineering (CSSE), 2023. Available from: https://github.com/CSSEGISandData/COVID-19.
    [45] G. González-Parra, A. J. Arenas, B. M. Chen-Charpentier, Combination of nonstandard schemes and Richardson's extrapolation to improve the numerical solution of population models, Math. Comput. Modell., 52 (2010), 1030–1036. https://doi.org/10.1016/j.mcm.2010.03.015 doi: 10.1016/j.mcm.2010.03.015
    [46] L. Bolzoni, E. Bonacini, C. Soresina, M. Groppi, Time-optimal control strategies in SIR epidemic models, Math. Biosci., 292 (2017), 86–96. https://doi.org/10.1016/j.mbs.2017.07.011 doi: 10.1016/j.mbs.2017.07.011
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1342) PDF downloads(56) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog