Multi-scale dispersion entropy (MDE) has been widely used to extract nonlinear features of electroencephalography (EEG) signals and realize automatic detection of epileptic seizures. However, information loss and poor robustness will exist when MDE is used to measure the nonlinear complexity of the time sequence. To solve the above problems, an automatic detection method for epilepsy was proposed, based on improved refined composite multi-scale dispersion entropy (IRCMDE) and particle swarm algorithm optimization support vector machine (PSO-SVM). First, the refined composite multi-scale dispersion entropy (RCMDE) is introduced, and then the segmented average calculation of coarse-grained sequence is replaced by local maximum calculation to solve the problem of information loss. Finally, the entropy value is normalized to improve the robustness of characteristic parameters, and IRCMDE is formed. The simulated results show that when examining the complexity of the simulated signal, IRCMDE can eliminate the issue of information loss compared with MDE and RCMDE and weaken the entropy change caused by different parameter selections. In addition, IRCMDE is used as the feature parameter of the epileptic EEG signal, and PSO-SVM is used to identify the feature parameters. Compared with MDE-PSO-SVM, and RCMDE-PSO-SVM methods, IRCMDE-PSO-SVM can obtain more accurate recognition results.
Citation: Bei Liu, Hongzi Bai, Wei Chen, Huaquan Chen, Zhen Zhang. Automatic detection method of epileptic seizures based on IRCMDE and PSO-SVM[J]. Mathematical Biosciences and Engineering, 2023, 20(5): 9349-9363. doi: 10.3934/mbe.2023410
Multi-scale dispersion entropy (MDE) has been widely used to extract nonlinear features of electroencephalography (EEG) signals and realize automatic detection of epileptic seizures. However, information loss and poor robustness will exist when MDE is used to measure the nonlinear complexity of the time sequence. To solve the above problems, an automatic detection method for epilepsy was proposed, based on improved refined composite multi-scale dispersion entropy (IRCMDE) and particle swarm algorithm optimization support vector machine (PSO-SVM). First, the refined composite multi-scale dispersion entropy (RCMDE) is introduced, and then the segmented average calculation of coarse-grained sequence is replaced by local maximum calculation to solve the problem of information loss. Finally, the entropy value is normalized to improve the robustness of characteristic parameters, and IRCMDE is formed. The simulated results show that when examining the complexity of the simulated signal, IRCMDE can eliminate the issue of information loss compared with MDE and RCMDE and weaken the entropy change caused by different parameter selections. In addition, IRCMDE is used as the feature parameter of the epileptic EEG signal, and PSO-SVM is used to identify the feature parameters. Compared with MDE-PSO-SVM, and RCMDE-PSO-SVM methods, IRCMDE-PSO-SVM can obtain more accurate recognition results.
[1] | I. E. Scheffer, S. Berkovic, G. Capovilla, M. B. Connolly, J. French, L. Guilhoto, et al., ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology, Epilepsia, 58 (2017), 512–521. https://doi.org/10.1111/epi.13709 doi: 10.1111/epi.13709 |
[2] | E. Howell, Epilepsy stigma: Moving from a global problem to a global solution, Seizure-Eur. J. Epilepsy, 19 (2010), 628629. https://doi.org/10.1016/j.seizure.2010.10.016 doi: 10.1016/j.seizure.2010.10.016 |
[3] | J. Gotman, Automatic seizure detection: improvements and evaluation, Electroencephalogr. Clin. Neurophysiol., 76 (1990), 317–324. https://doi.org/10.1016/0013-4694(90)90032-F doi: 10.1016/0013-4694(90)90032-F |
[4] | F. E. Abd El-Samie, T. N. Alotaiby, M. I. Khalid, S. A. Lshebeili, S. A. Aldosari, A review of EEG and MEG epileptic spike detection algorithms, IEEE Access, 6 (2018), 60673–60688. https://doi.org/10.1109/ACCESS.2018.2875487 doi: 10.1109/ACCESS.2018.2875487 |
[5] | H. Stefan, G. Pawlik, H. G. Böcher-Schwarz, H. J. Biersack, W. Burr, H. Penin, et al., Functional and morphological abnormalities in temporal lobe epilepsy: a comparison of interictal and ictal EEG, CT, MRI, SPECT and PET, J. Neurol., 234 (1987), 377–384. https://doi.org/10.1007/BF00314081 doi: 10.1007/BF00314081 |
[6] | S. Raghu, N. Sriraam, Y. Temel, S. V. Rao, A. S. Hegde, P. L. Kubben, Complexity analysis and dynamic characteristics of EEG using MODWT based entropies for identification of seizure onset, J. Biomed. Res., 34 (2020), 213. https://doi.org/10.7555/JBR.33.20190021 doi: 10.7555/JBR.33.20190021 |
[7] | U. R. Acharya, S. V. Sree, G. Swapna, R. J. Martis, J. S. Suri, Automated EEG analysis of epilepsy: a review, Knowledge-Based Syst., 45 (2013), 147–165. https://doi.org/10.1016/j.knosys.2013.02.014 doi: 10.1016/j.knosys.2013.02.014 |
[8] | S. Altunay, Z. Telatar, O. Erogul, Epileptic EEG detection using the linear prediction error energy, Expert Syst. Appl., 37 (2010), 5661–5665. https://doi.org/10.1016/j.eswa.2010.02.045 doi: 10.1016/j.eswa.2010.02.045 |
[9] | M. K. Siddiqui, R. Morales-Menendez, X. Huang, N. Hussain, A review of epileptic seizure detection using machine learning classifiers, Brain Inf., 7 (2020), 1–18. https://doi.org/10.1186/s40708-020-00105-1 doi: 10.1186/s40708-020-00105-1 |
[10] | U. R. Acharya, H. Fujita, V. K. Sudarshan, S. Bhat, J. E. Koh, Application of entropies for automated diagnosis of epilepsy using EEG signals: A review, Knowledge-Based Syst., 88 (2015), 85–96. https://doi.org/10.1016/j.knosys.2015.08.004 doi: 10.1016/j.knosys.2015.08.004 |
[11] | A. Bhattacharyya, R. B. Pachori, A. Upadhyay, U. R. Acharya, Tunable-Q wavelet transform based multiscale entropy measure for automated classification of epileptic EEG signals, Appl. Sci., 7 (2017), 385. https://doi.org/10.3390/app7040385 doi: 10.3390/app7040385 |
[12] | S. Patidar, T. Panigrahi, Detection of epileptic seizure using Kraskov entropy applied on tunable-Q wavelet transform of EEG signals, Biomed. Signal Process., 34 (2017), 74–80. https://doi.org/10.1016/j.bspc.2017.01.001 doi: 10.1016/j.bspc.2017.01.001 |
[13] | U. R. Acharya, F. Molinari, S. V. Sree, S. Chattopadhyay, K. H. Ng, J. S. Suri, Automated diagnosis of epileptic EEG using entropies, Biomed. Signal Process., 7 (2012), 401–408. https://doi.org/10.1016/j.bspc.2011.07.007 doi: 10.1016/j.bspc.2011.07.007 |
[14] | H. Ocak, Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy, Expert Syst. Appl., 36 (2009), 2027–2036. https://doi.org/10.1016/j.eswa.2007.12.065 doi: 10.1016/j.eswa.2007.12.065 |
[15] | V. Gupta, R. B. Pachori, Epileptic seizure identification using entropy of FBSE based EEG rhythms, Biomed. Signal Process., 53 (2019), 101569. https://doi.org/10.1016/j.bspc.2019.101569 doi: 10.1016/j.bspc.2019.101569 |
[16] | P. Sharanreddy, P. K. Kulkarni, EEG signal classification for epilepsy seizure detection using improved approximate entropy, Int. J. Public Health Sci., 2 (2013), 23–32. https://doi.org/10.11591/ijphs.v2i1.1836 doi: 10.11591/ijphs.v2i1.1836 |
[17] | H. Luo, T. Qiu, C. Liu, P. Huang, Research on fatigue driving detection using forehead EEG based on adaptive multi-scale entropy, Biomed. Signal Process., 51 (2019), 50–58. https://doi.org/10.1016/j.bspc.2019.02.005 doi: 10.1016/j.bspc.2019.02.005 |
[18] | Y. Song, J. Crowcroft, J. Zhang, Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine, J. Neurosci. Meth., 210 (2012), 132–146. https://doi.org/10.1016/j.jneumeth.2012.07.003 doi: 10.1016/j.jneumeth.2012.07.003 |
[19] | J. Xiang, C. Li, H. Li, R. Cao, B. Wang, X. Han, et al., The detection of epileptic seizure signals based on fuzzy entropy, J. Neurosci. Meth., 243 (2015), 18–25. https://doi.org/10.1016/j.jneumeth.2015.01.015 doi: 10.1016/j.jneumeth.2015.01.015 |
[20] | G. Ouyang C. Dang, X. Li, Multiscale entropy analysis of EEG recordings inepileptic rats, Biomed. Eng: Appl. Basis Commun., 21 (2009), 169–176. https://doi.org/10.4015/S1016237209001222 doi: 10.4015/S1016237209001222 |
[21] | C. Bandt, B. Pompe, Permutation entropy: a natural complexity measure for time series, Phys. Rev. Lett., 88 (2002), 174102. https://doi.org/10.1103/PhysRevLett.88.174102 doi: 10.1103/PhysRevLett.88.174102 |
[22] | W. P. Yao, T. B. Liu, J. F. Dai, J. Wang, Multiscale permutation entropy analysis of electroencephalogram, Acta. Phys. Sin., 63 (2014), 78704. https://doi.org/10.7498/aps.63.078704 doi: 10.7498/aps.63.078704 |
[23] | B. Liu, W. Tan, X. Zhang, Z. Peng, J. Cao, Recognition study of denatured biological tissues based on multi-scale rescaled range permutation entropy, Math. Biosci. Eng., 19 (2022), 102–114. https://doi.org/10.3934/mbe.2022005 doi: 10.3934/mbe.2022005 |
[24] | L. Y. Zhao, L. Wang, R. Q. Yan, Rolling bearing fault diagnosis based on wavelet packet decomposition and multi-scale permutation entropy, Entropy, 17 (2015), 6447–6461. https://doi.org/10.3390/e17096447 doi: 10.3390/e17096447 |
[25] | Y. Gao, F. Villecco, M. Li, W. Song, Multi-scale permutation entropy based on improved LMD and HMM for rolling bearing diagnosis, Entropy, 19 (2017), 176. https://doi.org/10.3390/e19040176 doi: 10.3390/e19040176 |
[26] | B. Fadlallah, B. Chen, A. Keil, J. Principe, Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information, Phys. Rev. E, 87 (2013), 22911. https://doi.org/10.1103/PhysRevE.87.022911 doi: 10.1103/PhysRevE.87.022911 |
[27] | B. Liu, S. Qian, W. Hu, Identification of denatured biological tissues based on time-frequency entropy and refined composite multi-scale weighted permutation entropy during HIFU treatment, Entropy, 21 (2019), 666. https://doi.org/10.3390/e21070666 doi: 10.3390/e21070666 |
[28] | R. Li, J. Wang, Interacting price model and fluctuation behavior analysis from Lempel-Ziv complexity and multi-scale weighted-permutation entropy, Phys. Lett. A, 380 (2016), 117–129. https://doi.org/10.1016/j.physleta.2015.09.042 doi: 10.1016/j.physleta.2015.09.042 |
[29] | M. Rostaghi, H. Azami, Dispersion entropy: a measure for time-series analysis, IEEE Signal Process. Lett., 23 (2016), 610–614. https://doi.org/10.1109/LSP.2016.2542881 doi: 10.1109/LSP.2016.2542881 |
[30] | M. Chakraborty, D. Mitra, Automated detection of epileptic seizures using multiscale and refined composite multiscale dispersion entropy, Chaos Solitons Fractals, 146 (2021), 110939. https://doi.org/10.1016/j.chaos.2021.110939 doi: 10.1016/j.chaos.2021.110939 |
[31] | J. Zheng, H. Pan, Q. Liu, K. Ding, Refined time-shift multiscale normalised dispersion entropy and its application to fault diagnosis of rolling bearing, Physica A, 545 (2020), 123641. https://doi.org/10.1016/j.physa.2019.123641 doi: 10.1016/j.physa.2019.123641 |
[32] | H. Azami, M. Rostaghi, D. Abasolo, J. Escudero, Refined composite multiscale dispersion entropy and its application to biomedical signals, IEEE Trans. Biomed. Eng., 64 (2017), 2872–2879. https://doi.org/10.1109/TBME.2017.2679136 doi: 10.1109/TBME.2017.2679136 |
[33] | X. Dai, K. Sheng, F. Shu, Ship power load forecasting based on PSO-SVM, Math. Biosci. Eng., 19 (2022), 4547–4567. https://doi.org/10.3934/mbe.2022210 doi: 10.3934/mbe.2022210 |
[34] | Y. Huang, J. Luo, Z. Ma, B. Tang, K. Zhang, J. Zhang, On combined PSO-SVM models in fault prediction of relay protection equipment, Circuits Syst. Signal Process., 42 (2023), 875–891. https://doi.org/10.1007/s00034-022-02056-w doi: 10.1007/s00034-022-02056-w |
[35] | R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, C. E. Elger, Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state, Phys. Rev. E, 64 (2001), 61907. https://doi.org/10.1103/PhysRevE.64.061907 doi: 10.1103/PhysRevE.64.061907 |
[36] | A. Shoeb, H. Edwards, J. Connolly, B. Bourgeois, S. T. Treves, J. Guttag, Patient-specific seizure onset detection, Epilepsy Behav., 5 (2004), 483–498. https://doi.org/10.1016/j.yebeh.2004.05.005 doi: 10.1016/j.yebeh.2004.05.005 |