In this study, the coding theory defined for k-order Gaussian Fibonacci polynomials is rearranged by taking $ x = 1 $. We call this coding theory the k-order Gaussian Fibonacci coding theory. This coding method is based on the $ {Q_k}, {R_k} $ and $ E_n^{(k)} $ matrices. In this respect, it differs from the classical encryption method. Unlike classical algebraic coding methods, this method theoretically allows for the correction of matrix elements that can be infinite integers. Error detection criterion is examined for the case of $ k = 2 $ and this method is generalized to $ k $ and error correction method is given. In the simplest case, for $ k = 2 $, the correct capability of the method is essentially equal to 93.33%, exceeding all well-known correction codes. It appears that for a sufficiently large value of $ k $, the probability of decoding error is almost zero.
Citation: Suleyman Aydinyuz, Mustafa Asci. Error detection and correction for coding theory on k-order Gaussian Fibonacci matrices[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 1993-2010. doi: 10.3934/mbe.2023092
In this study, the coding theory defined for k-order Gaussian Fibonacci polynomials is rearranged by taking $ x = 1 $. We call this coding theory the k-order Gaussian Fibonacci coding theory. This coding method is based on the $ {Q_k}, {R_k} $ and $ E_n^{(k)} $ matrices. In this respect, it differs from the classical encryption method. Unlike classical algebraic coding methods, this method theoretically allows for the correction of matrix elements that can be infinite integers. Error detection criterion is examined for the case of $ k = 2 $ and this method is generalized to $ k $ and error correction method is given. In the simplest case, for $ k = 2 $, the correct capability of the method is essentially equal to 93.33%, exceeding all well-known correction codes. It appears that for a sufficiently large value of $ k $, the probability of decoding error is almost zero.
[1] | T. Koshy, Fibonacci and Lucas Numbers with Applications, A Wiley-Interscience Publication, 2001. https://doi.org/10.1002/9781118033067 doi: 10.1002/9781118033067 |
[2] | S. Vajda, Fibonacci and Lucas Numbers and the Golden Section Theory and Applications, Ellis Harwood Limitted, 1989. |
[3] | A. P. Stakhov, B. Rozin, The golden shofar, Chaos Solitons Fractals, 26 (2005), 677–684. https://doi.org/10.1016/j.chaos.2005.01.057 doi: 10.1016/j.chaos.2005.01.057 |
[4] | A. P. Stakhov, The golden section in the measurement theory, Comput. Math. Appl., 17 (1989), 613–638. http://dx.doi.org/10.1016/0898-1221(89)90252-6 doi: 10.1016/0898-1221(89)90252-6 |
[5] | S. K. Sen, R. P. Agarwal, Golden ratio in science, as random sequence source, its computation, and beyond, Comput. Math. Appl., 56 (2008), 469–498. https://doi.org/10.1016/j.camwa.2007.06.030 doi: 10.1016/j.camwa.2007.06.030 |
[6] | M. Asci, D. Tasci, On Fibonacci, Lucas and special orthogonal polynomials, J. Comput. Appl. Math., 2007 (2007). https://doi.org/10.1016/j.cam.2007.01.026 doi: 10.1016/j.cam.2007.01.026 |
[7] | A. Stakhov, B. Rozin, Theory of Binet formulas for Fibonacci and Lucas p-numbers, Chaos Solitons Fractals, 27 (2006), 1162–1177. https://doi.org/10.1016/j.chaos.2005.04.106 doi: 10.1016/j.chaos.2005.04.106 |
[8] | M. El-Naschie, Modular groups in Cantorian E(∞) high-energy physics, Chaos Solitons Fractals, 16 (2003), 353–366. https://doi.org/10.1016/S0960-0779(02)00440-X doi: 10.1016/S0960-0779(02)00440-X |
[9] | M. Esmaeili, On the weakly superincreasing distributions and the Fibonacci-Hessenberg matrices, Ars Comb., 84 (2007), 217–224. |
[10] | M. Esmaeili, More on the Fibonacci sequence and Hessenberg matrices, Integers, 6 (2006), A32. |
[11] | M. Esmaeili, Polynomial Fibonacci-Hessenberg matrices, Chaos Solitons Fractals, 41 (2009), 2820–2827. https://doi.org/10.1016/j.chaos.2008.10.012 doi: 10.1016/j.chaos.2008.10.012 |
[12] | A. F. Horadam, A generalized Fibonacci sequence, Am. Math. Mon., 68 (1961), 455–459. http://www.jstor.org/stable/2311099 |
[13] | A. F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions, Am. Math. Mon., 70 (1963), 289–291. https://doi.org/10.2307/2313129 doi: 10.2307/2313129 |
[14] | J. H. Jordan, Gaussian Fibonacci and Lucas numbers, Fibonacci Quart., 3 (1965), 31–318. |
[15] | M. Asci, E. Gurel, Some properties of k-order Gaussian Fibonacci and Lucas numbers, Ars Combin., 135 (2017), 345–356. |
[16] | M. Asci, S. Aydinyuz, K-order Gaussian Fibonacci polynomials and applications to the coding/decoding theory, J. Discrete Math. Sci. Cryptography, 25 (2020), 1399–1416. https://doi.org/10.1080/09720529.2020.1816917 doi: 10.1080/09720529.2020.1816917 |
[17] | A. P. Stakhov, Fibonacci matrices, a generalization of the Cassini formula and a new coding theory, Chaos Solitions Fractals, 30 (2006), 56–66. https://doi.org/10.1016/j.chaos.2005.12.054 doi: 10.1016/j.chaos.2005.12.054 |
[18] | M. Basu, B. Prasad, The generalized relations among the code elements for Fibonacci coding theory, Chaos Solitons Fractals, 41 (2009), 2517–2525. https://doi.org/10.1016/j.chaos.2008.09.030 doi: 10.1016/j.chaos.2008.09.030 |
[19] | M. Basu, M. Das, Tribonacci matrices and a new coding theory, Discrete Math. Algorithms Appl., 6 (2014), 1450008. https://doi.org/10.1142/S1793830914500086 doi: 10.1142/S1793830914500086 |
[20] | M. Basu, M. Das, Coding theory on Fibonacci n-step numbers, Discrete Math. Algorithms Appl., 6 (2014), 1450017. https://doi.org/10.1142/S1793830914500177 doi: 10.1142/S1793830914500177 |
[21] | M. Esmaeili, M. Esmaeili, A Fibonacci-polynomial based coding method with error detection and correction, Comput. Math. Appl., 60 (2010), 2738–2752. https://doi.org/10.1016/j.camwa.2010.08.091 doi: 10.1016/j.camwa.2010.08.091 |
[22] | A. P. Stakhov, V. Massinggue, A. Sluchenkov, Introduction into Fibonacci Coding and Cryptography, Osnova, Kharkov, 1999. |
[23] | M. Asci, G. Y. Lee, On the generalized gaussian fibonacci numbers, Ars Combin., 132 (2017), 147–157. |