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Abstract: In this study, the coding theory defined for k-order Gaussian Fibonacci polynomials is 
rearranged by taking 1x  . We call this coding theory the k-order Gaussian Fibonacci coding theory. 
This coding method is based on the ,k kQ R   and ( )k

nE   matrices. In this respect, it differs from the 

classical encryption method. Unlike classical algebraic coding methods, this method theoretically 
allows for the correction of matrix elements that can be infinite integers. Error detection criterion is 
examined for the case of 2k   and this method is generalized to k  and error correction method is 
given. In the simplest case, for 2k  , the correct capability of the method is essentially equal to 
93.33%, exceeding all well-known correction codes. It appears that for a sufficiently large value of k , 
the probability of decoding error is almost zero. 
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1. Introduction 

The Fibonacci sequence is defined 1 2n n nF F F     for 2n    with the initial conditions 

0 10, 1F F  . The Fibonacci sequence and the golden ratio are used in many fields such as cryptology, 

coding theory and quantum physics in [1–11]. Horadam defined the Gaussian Fibonacci numbers in 
[12,13] and gave some general identities about the Gaussian Fibonacci numbers. Jordan generalized 
the Gaussian Fibonacci numbers with a similar definition in [14]. The Gaussian Fibonacci sequence is 
defined as 1 2n n nGF GF GF     with 1n    where 0 1, 1GF i GF    in [14]. It can also be easily 
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seen 𝐹  that 1n n nGF F iF    where nF  is the nth  Fibonacci number. 

Asci and Gurel generalized these studies and defined the k-order Gaussian Fibonacci numbers in 
[15] by the following recurrence relation 

( ) ( )

1

k
k k

n n j
j

GF GF 


 , for 0n   and 2k   

with boundary conditions for 1 0k n   , 

( )

1 , 1

, 2

0 , .

k
n

i k n

GF i k n

otherwise

  
  



 

It can also be seen that ( ) ( ) ( )
1

k k k
n n nGF F iF    where ( )k

nF  is the nth  k-order Fibonacci number. 

In [16], Asci and Aydinyuz defined the k-order Gaussian Fibonacci polynomials and gave some 

important results. The k-order Gaussian Fibonacci polynomials  ( )
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for 0n   and 2k   with the initial conditions for 1 0k n   , 

( )

1 , 1

( ) , 2

0 , .

k
n

ix k n

GF x i k n

otherwise

  
  



 

It can be seen that 

( ) ( ) ( )
1( ) ( ) ( )k k k

n n nGF x F x iF x   

where ( ) ( )k
nF x  is the nth  k-order Fibonacci polynomial. 

In order to ensure information security in terms of data transfer over communication channels, a 
lot of work has been done on this subject and continues to be done. Therefore, coding/decoding 
algorithms play an important role to ensure information security. Especially, Fibonacci coding theory 
is one of the most preferred in this field. We can see examples of these in many studies. For example, 
in [17], Stakhov gave a new approach to a coding theory using the generalization of the Cassini formula 
for Fibonacci p-numbers and 

pQ matrices in 2006. In 2009, Basu and Prasad in [18] presented the 

generalized relations among the code elements for the Fibonacci coding theory. Also, Basu and Das 
introduced a new coding theory for Tribonacci matrices in [19] and in 2014 they defined the coding 
theory for Fibonacci n-step numbers by generalizing the coding theory for Tribonacci numbers in [20]. 
Esmaeili in [21] also described a Fibonacci polynomial-based coding method with error detection and 
correction. 

In this paper, we remember the coding theory for k-order Gaussian Fibonacci polynomials given 
in [16] by taking 1x   for k-order Gaussian Fibonacci numbers. We describe the coding theory for 
the k-order Gaussian Fibonacci numbers. We give illustrative examples. The interesting relation 
between the elements of the code-message matrix is analyzed and derived. The most important of this 
paper is that we deal with error detection and error correction methods and examples of error 
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probability is given. 

2. k-Order Gaussian Fibonacci coding theory 

When we take 1x    in the coding theory defined in [16], we obtain the k-order Gaussian 
Fibonacci coding method. First, we define the kQ , kR  and ( )k

nE  matrices, which plays an important 

role in this coding theory. kQ , kR  and ( )k
nE  are defined the k k  matrices as the following: 

1 1 1 1 1
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0 0 0 0

0 0 0 1 0
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where ( )k
nGF  is the nth  k-order Gaussian Fibonacci number. 

Theorem 2.1. For 1n  , we get in [15] as follow: 

( )n k
k k nQ R E .                                  (2.1) 

Corollary 2.1. For 2k  , we get 

1 1 1

1 0 1

n

n i
Q R

i i

   
       

 

1

1

n n

n n

GF GF

GF GF




 
  
 

 

where nGF  is the nth  usual Gaussian Fibonacci number in [15]. 

Corollary 2.2. For 3k  , we get 

3 3

1 1 1 1 1 0

1 0 0 1 0

0 1 0 0 1

n

n

i

Q R i

i i
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2 1

1 1

1 2

n n n

n n n

n n n

GT GT GT

GT GT GT

GT GT GT

 

 

 

 
   
  

 

where nGT  is the nth  Gaussian Tribonacci number in [23]. 

2.1. Applications of k-order Gaussian Fibonacci numbers to coding theory 

In this section, we redefine k-order Gaussian Fibonacci coding theory using k-order Gaussian 
Fibonacci numbers and kQ  , kR   and ( )k

nE   play very important role in the construction of k-order 

Gaussian Fibonacci coding theory. 
We now obtain the matrix ( )k

nE   using kQ  , kR   matrices for the 2, 3k k    values and 

examine the inverse. 
 For 2k  , introducing the square matrix 2Q  of order 2 as: 

2

1 1

1 0
Q

 
  
 

 

and the square matrix 2R  of order 2 as: 

2

1

1

i
R

i i

 
   

 

for 1n  , we can use (2.1) 

(2)
1 2 2.E Q R  

1 1

1

i

i

 
  
 

 

(2) (2)
2 1
(2) (2)

1 0

GF GF

GF GF

 
  
 

 

such that 

 (2)
1 2 2det det .E Q R  

   1 . 2 i    

2 i   . 

The inverse of (2)
1E  is as: 

  1(2)
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0 1

(2)
1 21
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1
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GF GF

GF GFi

 
     

 

such that 

  1(2)
1

1
det

2
E

i



 

 

2 1

5 5
i   . 

Also, by (2.1) for 2n  , we can get (2)
2E  as follows: 

(2) 2
2 2 2.E Q R  

          
2 1

1 1

i i

i

  
   

 

             
(2) (2)
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(2) (2)
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such that 
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2 2 2det det .E Q R  

           2
1 . 2 i    

  2 .i   

The inverse of (2)
2E  is as: 

  1(2)
2

2 1 1 3
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E
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2 1

5 5
i  . 

Theorem 2.1.1. 
(2) (2)

(2) 1
(2) (2)

1

n n
n
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GF GF
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1
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. 

Theorem 2.1.2.  
(2) (2)

1(2) 1
(2) (2) (2)

1

1

det
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n
n n n
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E GF GF
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1

(2) (2)
12 2

1

det .det
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n n
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. 

 For 3k  , introducing the square matrix 3Q  of order 3 as: 

3

1 1 1

1 0 0

0 1 0

Q

 
   
    

and the square matrix 3R  of order 3 as: 

3

1 1 0

1 0

0 1

i

R i

i i

 
   
  

 

for 1n  , we can use (2.1) 

(3)
1 3 3.E Q R  

            

2 1 1

1 1 0

1 0

i i

i

i
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1 0 1
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such that  

 (3)
1 3 3det det .E Q R  

 1.2i  

          2i . 

The inverse of (3)
1E  is as: 
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  1(3)
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2

i
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Also, by (2.1) for 2n  , we can get (3)
2E  as follows: 

(3) 2
2 3 3.E Q R  
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2 1 1
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such that 

 (3) 2
2 3 3det det .E Q R  

 21 .2i  

                                      2i . 
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The inverse of (3)
2E  is as: 

  1(3)
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Theorem 2.1.3. 
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. 

For arbitrary k-positive integers, the square matrix ( )k
nE  of order k and inverses can be found 

similarly. 

2.2. k-order Gaussian Fibonacci coding/decoding method 

In this section, we describe a new k-order Gaussian Fibonacci coding theory. We put our message 
in a matrix of M  and let us represent the initial message in the form of the square matrix M  of 
order k. We take the k-order Gaussian Fibonacci matrix ( )k

nE  as a coding matrix and its inverse matrix 

  1( )k
nE


 as a decoding matrix for an arbitrary positive integer k. The transformation ( )k

nM E C   is 

called k-order Gaussian Fibonacci coding and we name the transformation   1( )k
nC E M


   as k-

order Gaussian Fibonacci decoding. We define C  as a code matrix. 
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2.3. Illustrative examples of k-order Gaussian Fibonacci coding/decoding method 

The given example is solved using the alphabet table below. 
Using the arbitrary value of 0s  , we write the following alphabet according to mod30 . We can 

extend the characters in the table according to our wishes. We begin the “s” for the first character in 
Table 1. 

Table 1. Alphabet table. 

A B C D E F G H I J 
s  1s   2s   3s   4s   5s   6s   7s   8s   9s   
K L M N O P Q R S T 

10s   11s   12s   13s   14s   15s   16s   17s   18s   19s   
U V W X Y Z 0 ! ? . 

20s   21s   22s   23s   24s   25s   26s   27s   28s   29s   

Example 2.3.1. Let us consider the message matrix for the following message text: 

“CODE”                                   (2.2) 

 Step 1: Let’s create the message matrix using the message text: 

2 2

C O
M

D E


 
  
 

 

 Step 2: Let’s write the message matrix M  according to the alphabet table for the arbitrary 
value “s” we choose. For 2s  ; 

4 16

5 6
M

 
  
 

 

 Step 3: For 2k  , 2n  , we use (2.1); 

(2) 2
2 2 2.E Q R  

         
2 1

1 1

i i

i

  
   

 

 Step 4: The code message is: 

(2)
2C M E   

            
4 16 2 1

5 6 1 1

i i

i

    
       

 

           
24 20 20 4

16 11 11 5

i i

i i

  
    

 

 Step 5: The decode message is: 
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  1(2)
2M C E


   

          

2 1 1 3
24 20 20 4 5 5 5 5
16 11 11 5 1 3 3 4

5 5 5 5

i i
i i

i i
i i

      
           

 

4 16

5 6

 
  
   

C O

D E

 
  
 

. 

Example 2.3.2. Let us consider the message matrix for the following message text: 

“PUBLIC KEY” 

 Step 1: Let’s create the message matrix using the message text: 

3 3

P U B

M L I C

K E Y


 
   
  

 

 Step 2: Let’s write the message matrix M according to the alphabet table for the arbitrary 
value “s” we choose. For 5s  : 

20 25 6

16 13 7

15 9 29

M

 
   
  

 

 Step 3: For 3k  , 6n  , we use (2.1): 

(3) 6
6 3 3.E Q R  

                      

44 24 24 13 13 7

24 13 13 7 7 4

13 7 7 4 4 2

i i i

i i i

i i i

   
     
    

 

 Step 4: The code message is: 

(3)
6C M E   

                          

1558 847 847 459 459 252

1107 602 602 327 327 178

1253 680 680 374 374 199

i i i

i i i

i i i

   
     
    

 

 Step 5: The decode message is: 
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  1(6)
3M C E


   

     

P U B

L I C

K E Y

 
   
  

 

        

20 25 6

16 13 7

15 9 29

 
   
  

. 

3. Connections between the code matrix elements 

In this section, we consider the k-order Gaussian Fibonacci coding/decoding method for 2k  . 
We have an interesting relation among the elements of a code matrix C  that has a crucial role in the 
error-correction process, outlined as follows: 

(2) (2)
1 2(2) 1

(2) (2)
3 4 1

n n
n

n n

m m GF GF
C M E

m m GF GF




  
      

   
                    (3.1) 

1 2

3 4

c c

c c

 
  
 

                                    (3.2) 

and 

  1(2)
nM C E


                                  (3.3) 

  
(2) (2)

1 2 1
(2) (2)

3 4 12 2

1

det det

n n
n

n n

c c GF GF

c c GF GFQ R





               
 (3.4) 

1 2

3 4

m m

m m

 
  
 

 

For the case for an even integer 2n m , we obtain the following equation 

(2) (2)
1 2 1 2 1

(2) (2)
3 4 3 4 1

1

2
n n

n n

m m c c GF GF

m m c c i GF GF




     
               

                (3.5) 

since the  2det 1Q   and  2det 2R i  . 

It follows from (3.5) that the elements of the matrix M can be obtained according to the following 
formulas: 

 (2) (2)
1 1 1 2

1

2 n nm GF c GF c
i  


                        (3.6) 
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 (2) (2)
2 1 1 2

1

2 n nm GF c GF c
i   


                      (3.7) 

 (2) (2)
3 1 3 4

1

2 n nm GF c GF c
i  


                       (3.8) 

 (2) (2)
4 3 1 4

1

2 n nm GF c GF c
i   


                      (3.9) 

Since the 0s  , the elements of the matrix M  are 

1 0m  , 2 0m  , 3 0m   and 4 0m                    (3.10) 

Because of the condition (3.10) we can write the equalities (3.6)–(3.9) as: 

 (2) (2)
1 1 1 2

1
0

2 n nm GF c GF c
i   


                   (3.11) 

 (2) (2)
2 1 1 2

1
0

2 n nm GF c GF c
i    


                  (3.12) 

 (2) (2)
3 1 3 4

1
0

2 n nm GF c GF c
i   


                   (3.13) 

 (2) (2)
4 3 1 4

1
0

2 n nm GF c GF c
i    


                  (3.14) 

From the Eqs (3.11) and (3.12), we can get 

(2) (2)
1

2 1 2(2) (2)
1

n n

n n

GF GF
c c c

GF GF




                        (3.15) 

or 

(2) (2)
11

(2) (2)
1 2

n n

n n

GF GFc

GF c GF




                           (3.16) 

Similarly, from (3.13) and (3.14), we can obtain: 

(2) (2)
1

4 3 4(2) (2)
1

n n

n n

GF GF
c c c

GF GF




                        (3.17) 

or 

(2) (2)
3 1

(2) (2)
1 4

n n

n n

GF c GF

GF c GF




                           (3.18) 

Since two consecutive Gaussian Fibonacci numbers approach the golden ratio, we also obtain the 
following equations in (3.16) and (3.18) that connect the elements of the code matrix in (3.1): 

1 2c c                              (3.19) 

3 4c c                              (3.20) 
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where 
1 5

2
 
  is the “golden ratio”. 

Similarly, for an odd integer 2 1n m  , we can write the same approximate equalities (3.19) and 
(3.20) that connect the elements 1 2 3, ,c c c  and 4c  of the code matrix in (3.1). 

Thus, we have generated some important identities that connect the elements of the code matrix 
in (3.1) for the case 2k  . 

If we consider the coding/decoding method for 3k  , we can obtain interesting identities as in 
2k   . Since two consecutive Gaussian Tribonacci numbers approach    where 1.8393.   

However, for general case of k  we can find mathematical identities that connect the code matrix 
elements similar to the (3.19) and (3.20). 

Example 3.1. Suppose 2k   . Thus, we have 
1 5

1.618
2

 
   . Assume that the following 

message-matrix is to be transmitted in (2.2): 
For 2s  , we can get 

4 16

5 6

C O
M

D E

   
    
   

 

 If 2n   then 

1 2

3 4

24 20 20 4

16 11 11 5

c ci i
C

c ci i

    
        

 

In this case, we have the following numbers rounded off to their first five digits: 

1

2

1.3462 0.7307
c

i
c

  , 3

4

1.5822 0.2808
c

i
c

   

 For 5n  , we have 

112 68 68 44

70 43 43 27

i i
C

i i

  
    

 

In this case 

1

2

1.6171 0.0463
c

i
c

  , 3

4

1.6179 0.0159
c

i
c

   

 For 10n  , we have 

1236 764 764 472

775 479 479 296

i i
C

i i

  
    

 

In this case 

1

2

1.618 0.0003
c

i
c

  , 3

4

1.618 0.0001
c

i
c

   

 For 15n  , we have 
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13708 8472 8472 5236

8595 5312 5312 3283

i i
C

i i

  
    

 

In this case 

1

2

1.618
c

c
 , 3

4

1.618
c

c
  

These show that for 15n   the relation (3.19) and (3.20) holds very well. 
Therefore, we select the value of n  large enough, as seen in Examples 2.3.1 we get a good 

approximation of  . If we apply similar operation in Example 2.3.2, when n  is chosen large enough 
we get a good approximation of   where 1.8393   and   is the ratio between two Gaussian 
Tribonacci numbers. 

4. Error detection and correction 

The k-order Gaussian Fibonacci coding/decoding method considered above provides an interesting 
possibility to detect and correct “errors” in code message C . Error detection and correction for 2k   
depends on the states of the determinant of the matrix C  and the connections with the code matrix 
elements at (3.19) and (3.20). These mathematical relations given by (3.19), (3.20) and the determinant 
of the code matrix C  play a role in checking relations of the k-order Gaussian Fibonacci 
coding/decoding method. The error-correction algorithm for Fibonacci coding has been explained in [10] 
and [13]. This defined algorithm is valid and applicable to the k-order Gaussian Fibonacci numbers we 
have given in this study. 

First, let’s calculate the determinant of our message matrix M and send it to the communication 
channel right after the code matrix elements. Here, the determinant of M will be the control element 
for the C  code matrix received from the communication channel. After taking the determinant of the 
code matrix C  and its control element M , we can calculate the determinant of the code matrix C
and compare the determinant of M with the determinant of C with respect to the control relation. If 
the operations we have done after this check are exactly appropriate, we can conclude that the elements 
of the code matrix C are transmitted on the communication channel without errors. If the opposite 
happens, we can say that there are errors in the elements of the code matrix C or the determinant of 
the control element M . 

Suppose the elements of the C code matrix errors. This matrix can have a one-fold error, double-
fold error or 2k  fold error. To explain how to correct these errors, we consider the 2 2  type matrix 
obtained for 2k  . These cases are considered. 

Our first hypothesis is that we have the case of a “single” error in the code matrix C received 
from the communication channel. It is clearly seen that there are four types of single-fold errors in the 
C code matrix: 

( )a  2

3 4

x c

c c

 
 
 

 ( )b  1

3 4

c y

c c

 
 
 

 ( )c  1 2

4

c c

z c

 
 
 

 ( )d  1 2

3

c c

c t

 
 
 

          (4.1) 

where , , ,x y z t  are possible “destroyed” elements. 

Since it is (2)
nC M E  , if we take the determinant of both sides, we get the following equations: 

4 2 3 det( )( 1) (2 )nxc c c M i     (a possible “single error” is in the element 1c )      (4.2) 
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1 4 3 det( )( 1) (2 )nc c yc M i     (a possible “single error” is in the element 2c )    (4.3) 

1 4 2 det( )( 1) (2 )nc c c z M i     (a possible “single error” is in the element 3c )    (4.4) 

1 2 3 det( )( 1) (2 )nc t c c M i     (a possible “single error” is in the element 4c )     (4.5) 

or equivalently 

2 3

4

det( )( 1) (2 )nM i c c
x

c

  
    ( )a                   (4.6) 

1 4

3

det( )( 1) (2 )nM i c c
y

c

   
  ( )b                   (4.7) 

1 4

2

det( )( 1) (2 )nM i c c
z

c

   
   ( )c                   (4.8) 

2 3

1

det( )( 1) (2 )nM i c c
t

c

  
    ( )d                   (4.9) 

The formulas (4.6)–(4.9) give four possible states of a “single error”. However, we need to 
choose the correct case from among , , ,x y z t  integer solutions. We have to choice such solutions, 

which satisfies to the additional “checking relations” (3.19) and (3.20). If calculations by formulas 
(4.6)–(4.9) do not give an integer result, we can conclude that our “single error” hypothesis is incorrect 
or that the determinant of control element M is “error”. In the second case, we can use approximate 
Eqs (3.19) and (3.20) to check the correctness of the C  code matrix. 

Similarly, we can easily check “double errors” of the C   code matrix. Suppose that the code 
matrix C  has elements x  and y  error as shown below: 

3 4

x y

c c

 
 
 

                               (4.10) 

Then, 

4 3 det( )( 1) (2 )nxc yc M i                         (4.11) 

However, according to the (3.19) there is the following relation between x and y  

x y                                  (4.12) 

Again, only integer solutions are acceptable. If no integer solution is obtained, then two-fold errors 
have not occurred. 

Hence, we can show that with this type of approach, there is the possibility to correct all possible 
triple-fold errors in the C code matrix. 

4

x y

z c

 
 
 

. 

Therefore, our method of error correction depends on the verification of different hypotheses 
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regarding errors in the code matrix using the determinant of the control relationship C matrix, (3.19) 
and (3.20), and the elements of the code matrix as integers. If all our solutions do not reach integer 
solutions, it means that the determinant of the control item M is wrong or there is a four-fold error in 
the C code matrix, and we should reject it. The code matrix C is defective and not correctable. 

As a result, there are 15 error conditions in the C code matrix. According to the method given 
in [17], it means that the correctable probability of the method is equal since 14 cases between them 
can be corrected and  

14
0.9333 93.33%

15corS     

If we generalize this equation as in [20], since only 2k  fold errors cannot be corrected with this 
method, the error correction capacity of the method is 

2

2

2 1

2

k

k


 

where k is the order of the message-matrix. So far sufficiently large values of k , the probability of 
decoding error is almost zero. 

Consequently, for a sufficiently large value of k , in the case of n k , the correct ability of this 
method is 

2

2

2 2

2 1

k

k




. 

Therefore, for large value of k , the correct possibility of the method is 

2

2

2 2
1 100%

2 1

k

k


 


. 

5. Conclusions 

In this paper, we obtained the coding theory for k-order Gaussian Fibonacci polynomials given in 
[16] by taking 1x   for k-order Gaussian Fibonacci numbers and gave illustrative examples. This 
coding method differs from classical algebraic coding methods in this respect. We can show this 
difference with the following features: 

1) Since the ,n k  and 0s   values are arbitrarily chosen in the k-order Gaussian Fibonacci 

coding theory, it is difficult to estimate the information transmission between the two channels by a 
third channel, which increases the reliability of the information transmission. In addition, this method 
depends on matrix multiplication and can be performed quickly and easily by today’s computers. 

2) With k-order Gaussian Fibonacci coding theory, we can encrypt and send messages of the 
desired length by enlarging the k  value sufficiently. 

3) The main practical feature of this method is that matrix elements are error detection and 
correction objects. 

4) The Gaussian Fibonacci coding method, which is the simplest coding method obtained for the 
2k   value, has been redefined by handling the 2 2  type matrices with “single-fold, double-fold 

and triple-fold errors”. 
5) In the simplest case, for 2k  , the correct capability of the method is essentially equal to 
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93.33%, exceeding all well-known correction codes. 
6) This error correction method given for 2k   is generalized and the correct ability of the 

errors of this method increases as k   increases, and the correct ability approaches 100% for a 
sufficiently large value of k . 

7) This article is just a brief outline of a new coding theory based on the k-order Gaussian 
Fibonacci matrices of the articles in [17,18,20,21] and [22]. 
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