Research article Special Issues

Individual-based modeling of COVID-19 transmission in college communities

  • #Joint last authors
  • Received: 30 June 2022 Revised: 23 August 2022 Accepted: 01 September 2022 Published: 20 September 2022
  • The ongoing COVID-19 pandemic has created major public health and socio-economic challenges across the United States. Among them are challenges to the educational system where college administrators are struggling with the questions of how to mitigate the risk and spread of diseases on their college campus. To help address this challenge, we developed a flexible computational framework to model the spread and control of COVID-19 on a residential college campus. The modeling framework accounts for heterogeneity in social interactions, activities, environmental and behavioral risk factors, disease progression, and control interventions. The contribution of mitigation strategies to disease transmission was explored without and with interventions such as vaccination, quarantine of symptomatic cases, and testing. We show that even with high vaccination coverage (90%) college campuses may still experience sizable outbreaks. The size of the outbreaks varies with the underlying environmental and socio-behavioral risk factors. Complementing vaccination with quarantine and mass testing was shown to be paramount for preventing or mitigating outbreaks. Though our quantitative results are likely provisional on our model assumptions, sensitivity analysis confirms the robustness of their qualitative nature.

    Citation: Durward Cator, Qimin Huang, Anirban Mondal, Martial Ndeffo-Mbah, David Gurarie. Individual-based modeling of COVID-19 transmission in college communities[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 13861-13877. doi: 10.3934/mbe.2022646

    Related Papers:

  • The ongoing COVID-19 pandemic has created major public health and socio-economic challenges across the United States. Among them are challenges to the educational system where college administrators are struggling with the questions of how to mitigate the risk and spread of diseases on their college campus. To help address this challenge, we developed a flexible computational framework to model the spread and control of COVID-19 on a residential college campus. The modeling framework accounts for heterogeneity in social interactions, activities, environmental and behavioral risk factors, disease progression, and control interventions. The contribution of mitigation strategies to disease transmission was explored without and with interventions such as vaccination, quarantine of symptomatic cases, and testing. We show that even with high vaccination coverage (90%) college campuses may still experience sizable outbreaks. The size of the outbreaks varies with the underlying environmental and socio-behavioral risk factors. Complementing vaccination with quarantine and mass testing was shown to be paramount for preventing or mitigating outbreaks. Though our quantitative results are likely provisional on our model assumptions, sensitivity analysis confirms the robustness of their qualitative nature.



    加载中


    [1] Here's our list of colleges' reopening models. https://www.chronicle.com/article/heres-a-list-of-colleges-plans-for-reopening-in-the-fall
    [2] N. Ghorui, A. Ghosh, S. Mondal, M. Bajuri, A. Ahmadian, S. Salahshour, et al., Identification of dominant risk factor involved in spread of COVID-19 using hesitant fuzzy MCDM methodology, Results Phys., 21 (2021), 103811. https://doi.org/10.1016/j.rinp.2020.103811 doi: 10.1016/j.rinp.2020.103811
    [3] How colleges are dealing with high COVID case counts on campus. NPR Houston Public Media 2022. Available from: https://www.npr.org/2022/01/23/1072730869/omicron-college-campuses-covid-outbreaks
    [4] Cornell University reports more than 900 Covid-19 cases this week. Many are Omicron variant cases in fully vaccinated students, CNN 2021. Available from: https://www.cnn.com/2021/12/14/us/cornell-university-covid-cases/index.html
    [5] L. Rennert, C. McMahan, C. A. Kalbaugh, Y. Yang, B. Lumsden, D. Dean, et al., Surveillance-based informative testing for detection and containment of SARS-CoV-2 outbreaks on a public university campus: An observational and modelling study, Lancet Child Adolescent Health, 5 (2021), 428-436. https://doi.org/10.1016/S2352-4642(21)00060-2 doi: 10.1016/S2352-4642(21)00060-2
    [6] L. Rennert, C. A. Kalbaugh, L. Shi, C. McMahan, Modelling the impact of presemester testing on COVID-19 outbreaks in university campuses, BMJ Open, 10 (2020), e042578. http://dx.doi.org/10.1136/bmjopen-2020-042578 doi: 10.1136/bmjopen-2020-042578
    [7] A. Elbanna, G. N. Wong, Z. J. Weiner, T. Wang, H. Zhang, Z. Lui, et al., Entry screening and multi-layer mitigation of COVID-19 cases for a safe university reopening, medRxiv 2020. https://doi.org/10.1101/2020.08.29.20184473 doi: 10.1101/2020.08.29.20184473
    [8] B. Lopman, C. Y. Liu, A. Le Guillou, A. Handel, T. Lash, A. Isakov, et al., A modeling study to inform screening and testing interventions for the control of SARS-CoV-2 on university campuses, Sci. Rep., 11 (2021), 1-11. https://doi.org/10.1038/s41598-021-85252-z doi: 10.1038/s41598-021-85252-z
    [9] H. L. Hambridge, R. Kahn, J. P. Onnela, Examining sars-cov-2 interventions in residential colleges using an empirical network, Int. J. Infect. Dis., 113 (2021), 325-330. https://doi.org/10.1016/j.ijid.2021.10.008 doi: 10.1016/j.ijid.2021.10.008
    [10] R. Bahl, N. Eikmeier, A. Fraser, M. Junge, F. Keesing, K. Nakahata, et al., Modeling COVID-19 spread in small colleges, PLoS One, 16 (2021), e0255654. https://doi.org/10.1371/journal.pone.0255654 doi: 10.1371/journal.pone.0255654
    [11] A. D. Paltiel, A. Zheng, R. P. Walensky, Assessment of SARS-CoV-2 screening strategies to permit the safe reopening of college campuses in the United States, JAMA Network Open, 3 (2020), e2016818-e. https://doi.org/10.1001/jamanetworkopen.2020.16818 doi: 10.1001/jamanetworkopen.2020.16818
    [12] K. A. Weeden, B. Cornwell, The small-world network of college classes: Implications for epidemic spread on a university campus, Sociol. Sci., 7 (2020), 222-241. https://doi.org/10.15195/v7.a9 doi: 10.15195/v7.a9
    [13] P. T. Gressman, J. R. Peck, Simulating COVID-19 in a university environment, Math. Biosci., 328 (2020), 108436. https://doi.org/10.1016/j.mbs.2020.108436 doi: 10.1016/j.mbs.2020.108436
    [14] R. Goyal, J. Hotchkiss, R. T. Schooley, V. De Gruttola, N. K. Martin, Evaluation of severe acute respiratory syndrome coronavirus 2 transmission mitigation strategies on a university campus using an agent-based network model, Clin. Infect. Diseases, 73 (2021), 1735-1741. https://doi.org/10.1093/cid/ciab037 doi: 10.1093/cid/ciab037
    [15] B. Lopman, C. Liu, A. Le Guillou, A. Handel, T. Lash, A. Isakov, et al., A model of COVID-19 transmission and control on university campuses, medRxiv 2020. https://doi.org/10.1101/2020.06.23.20138677 doi: 10.1101/2020.06.23.20138677
    [16] J. Mossong, N. Hens, M. Jit, P. Beutels, K. Auranen, R. Mikolajczyk, et al., Social contacts and mixing patterns relevant to the spread of infectious diseases, PLoS Med., 5 (2008), e74. https://doi.org/10.1371/journal.pmed.0050074 doi: 10.1371/journal.pmed.0050074
    [17] X. Ma, X. Luo, L. Li, Y. Li, G. Sun, The influence of mask use on the spread of COVID-19 during pandemic in New York City, Results Phys., 2022. https://doi.org/10.1016/j.rinp.2022.105224 doi: 10.1016/j.rinp.2022.105224
    [18] G. Sun, S. Wang, M. Li, L. Li, J. Zhang, W. Zhang, et al., Transmission dynamics of COVID-19 in Wuhan, China: Effects of lockdown and medical resources, Nonlinear Dynam., 2020. https://doi.org/10.1007/s11071-020-05770-9 doi: 10.1007/s11071-020-05770-9
    [19] N.M. Ferguson, D. A. Cummings, C. Fraser, J. C. Cajka, P. C. Cooley, D. S. Burke, Strategies for mitigating an influenza pandemic, Nature, 442 (2006), 448-452. https://doi.org/10.1038/nature04795 doi: 10.1038/nature04795
    [20] J. M. Epstein, Modelling to contain pandemics, Nature, 460 (2009), 687. https://doi.org/10.1038/460687a doi: 10.1038/460687a
    [21] N. M. Ferguson, D. Laydon, G. N. Gilani, N. Imai, K. Ainslie, M. Begulin, et al., Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand, 2020.
    [22] D. K. Sewell, A. Miller, CDC MInD-Healthcare Program, Simulation-free estimation of an individual-based SEIR model for evaluating nonpharmaceutical interventions with an application to COVID-19 in the District of Columbia, PLoS One, 15 (2020), e0241949. https://doi.org/10.1371/journal.pone.0241949 doi: 10.1371/journal.pone.0241949
    [23] H. Tian, Y. Liu, Y. Li, C. Wei, B. Chen, M. Kraemer, et al., An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China, Science 2020. https://doi.org/10.1126/science.abb6105 doi: 10.1126/science.abb6105
    [24] Z. Du, X. Xu, Y. Wu, L. Wang, B. Cowling, L. A. Meyers, Serial interval of COVID-19 among publicly reported confirmed cases, Emerg. Infect. Dis., 2020. https://doi.org/10.3201/eid2606.200357 doi: 10.3201/eid2606.200357
    [25] E. Bonabeau, Agent-based modeling: Methods and techniques for simulating human systems, Proceed. Nat. Acad. Sci., 99 (2002), 7280-7287. https://doi.org/10.1073/pnas.082080899 doi: 10.1073/pnas.082080899
    [26] W. T. Enanoria, F. Liu, J. Zipprich, K. Harriman, S. Ackley, S. Blumberg, et al., The effect of contact investigations and public health interventions in the control and prevention of measles transmission: A simulation study, PLoS One, 11 (2016), e0167160. https://doi.org/10.1371/journal.pone.0167160 doi: 10.1371/journal.pone.0167160
    [27] A. H. Auchincloss, A. V. Diez Roux, A new tool for epidemiology: The usefulness of dynamic-agent models in understanding place effects on health, Am. J. Epidemiol., 168 (2008), 1-8. https://doi.org/10.1093/aje/kwn118 doi: 10.1093/aje/kwn118
    [28] C. Wolfram, An agent-based model of covid-19, Complex Systems, 29 (2020).
    [29] Q. Huang, A. Mondal, X. Jiang, M. A. Horn, F. Fan, P. Fu, et al., SARS-CoV-2 transmission and control in a hospital setting: An individual-based modelling study, Royal Soc. Open Sci., 8 (2021). https://doi.org/10.1098/rsos.201895 doi: 10.1098/rsos.201895
    [30] K. Azuma, U. Yanagi, N. Kagi, H. Kim, M. Ogata, M. Hayashi, Environmental factors involved in SARS-CoV-2 transmission: Effect and role of indoor environmental quality in the strategy for COVID-19 infection control, Environ. Health Prevent. Med., 2020. https://doi.org/10.1186/s12199-020-00904-2 doi: 10.1186/s12199-020-00904-2
    [31] M. Cevik, M. Tate, O. Lloyd, A. E. Maraolo, J. Schafers, A. Ho, SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: A systematic review and meta-analysis, Lancet Microbe, 2020. https://doi.org/10.1016/S2666-5247(20)30172-5 doi: 10.1016/S2666-5247(20)30172-5
    [32] M. A. Johansson, T. M. Quandelacy, S. Kada, V. Prasad, M. Steele, J. Brooks, et al., SARS-CoV-2 transmission from people without COVID-19 symptoms, JAMA Network Open, 4 (2021), e2035057-e. https://doi.org/10.1001/jamanetworkopen.2020.35057 doi: 10.1001/jamanetworkopen.2020.35057
    [33] X. He, E. H. Y. Lau, P. Wu, X. Deng, J. Wang, X. Hao, et al., Temporal dynamics in viral shedding and transmissibility of COVID-19, Nat. Med., 26 (2020), 672-675. https://doi.org/10.1038/s41591-020-0869-5 doi: 10.1038/s41591-020-0869-5
    [34] P. Ashcroft, J. S. Huisman, S. Lehtinen, J. A. Bouman, C. L. Althaus, R. R. Regoes, et al., COVID-19 infectivity profile correction, Swiss Med. Wkly., 150 (2020), w20336. https://doi.org/10.4414/smw.2020.20336 doi: 10.4414/smw.2020.20336
    [35] C. Fraser, S. Riley, R. M. Anderson, N. M. Ferguson, Factors that make an infectious disease outbreak controllable, Proceed. Nat. Acad. Sci., 101 (2004), 6146-6151. https://doi.org/10.1073/pnas.030750610 doi: 10.1073/pnas.030750610
    [36] M. Ebell, D. Forgacs, Y. Shen, T. Ross, C. Hulme, M. Bentivegna, et al., High prevalence of both previous infection with SARS-CoV-2 and persistent symptoms, J. Am. Board Family Med., 2021. https://doi.org/10.3122/jabfm.2022.03.210348 doi: 10.3122/jabfm.2022.03.210348
    [37] P. Poletti, M. Tirani, D. Cereda, F. Trentini, G. Guzzetta, G. Sabatino, et al., Association of age with likelihood of developing symptoms and critical disease among close contacts exposed to patients with confirmed SARS-CoV-2 infection in Italy, JAMA Network Open, 2021. https://doi.org/10.1001/jamanetworkopen.2021.1085 doi: 10.1001/jamanetworkopen.2021.1085
    [38] D. Buitrago-Garcia, D. Egli-Gany, M. Counotte, S. Hossmann, H. Imeri, A. Ipekci, et al., Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: A living systematic review and meta-analysis, PLoS Med., 2020. https://doi.org/10.1371/journal.pmed.1003346 doi: 10.1371/journal.pmed.1003346
    [39] S. Malhotra, K. Mani, R. Lodha, S. Bakhshi, V. Mathur, P. Gupta, et al., COVID-19 infection, and reinfection, and vaccine effectiveness against symptomatic infection among health care workers in the setting of omicron variant transmission in New Delhi, India, Lancet Regional Health, 2022. https://doi.org/10.1016/j.lansea.2022.100023 doi: 10.1016/j.lansea.2022.100023
    [40] H. Tseng, B. Ackerson, Y. Luo, L. Sy, C. Talarico, Y. Tian, et al., Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants, Nat. Med., 28 (2022), 1063-1071. https://doi.org/10.1038/s41591-022-01753-y doi: 10.1038/s41591-022-01753-y
    [41] N. Andrews, J. Stowe, F. Kirsebom. S. Toffa, T. Rickeard, E. Gallagher, et al., Covid-19 vaccine effectiveness against the Omicron (B.1.1.529) Variant, N Engl. J. Med., 386 (2022), 1532-1546. https://doi.org/10.1056/NEJMoa2119451 doi: 10.1056/NEJMoa2119451
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1946) PDF downloads(56) Cited by(2)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog