The aim of this article is to analyze the delay influence on the attraction for a scalar tick population dynamics equation accompanying two disparate delays. Taking advantage of the fluctuation lemma and some dynamic inequalities, we derive a criterion to assure the persistence and positiveness on the considered model. Furthermore, a time-lag-dependent condition is proposed to insure the global attractivity for the addressed model. Besides, we give some simulation diagrams to substantiate the validity of the theoretical outcomes.
Citation: Fawaz E Alsaadi, Chuangxia Huang, Madini O Alassafi, Reem M Alotaibi, Adil M Ahmad, Jinde Cao. Attractivity criterion on a delayed tick population dynamics equation with a reproductive function $ f(u) = ru^{\gamma}e^{-\sigma u} $[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 12852-12865. doi: 10.3934/mbe.2022600
The aim of this article is to analyze the delay influence on the attraction for a scalar tick population dynamics equation accompanying two disparate delays. Taking advantage of the fluctuation lemma and some dynamic inequalities, we derive a criterion to assure the persistence and positiveness on the considered model. Furthermore, a time-lag-dependent condition is proposed to insure the global attractivity for the addressed model. Besides, we give some simulation diagrams to substantiate the validity of the theoretical outcomes.
[1] | X. Zhang, J. Wu, Critical diapause portion for oscillations: Parametric trigonometric functions and their applications for Hopf bifurcation analyses, Math. Methods Appl. Sci., 42 (2019), 1363–1376. https://doi.org/10.1002/mma.5424 doi: 10.1002/mma.5424 |
[2] | X. Zhang, F. Scarabel, X. Wang, J. Wu, Global continuation of periodic oscillations to a diapause rhythm, J. Dyn. Differ. Equation, 2020. https://doi.org/10.1007/s10884-020-09856-1 doi: 10.1007/s10884-020-09856-1 |
[3] | C. Huang, B. Liu, Traveling wave fronts for a diffusive Nicholson's Blowflies equation accompanying mature delay and feedback delay, Appl. Math. Lett., 134 (2022), 108321. https://doi.org/10.1016/j.aml.2022.108321. doi: 10.1016/j.aml.2022.108321 |
[4] | X. Li, W. Daniel, J. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica, 99 (2019), 361–368. https://doi.org/10.1016/j.automatica.2018.10.024 doi: 10.1016/j.automatica.2018.10.024 |
[5] | X. Li, S. Song, J. Wu, Exponential stability of nonlinear systems with delayed impulses and applications, IEEE Trans. Autom. Control, 64 (2019), 4024–4034. https://doi.org/10.1109/TAC.2019.2905271 doi: 10.1109/TAC.2019.2905271 |
[6] | X. Li, D. Peng, J. Cao, Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Trans. Autom. Control, 65 (2020), 4908–4913. https://doi.org/10.1109/TAC.2020.2964558 doi: 10.1109/TAC.2020.2964558 |
[7] | X. Li, X. Yang, S. Song, Lyapunov conditions for finite-time stability of time-varying time-delay systems, Automatica, 103 (2019), 135–140. https://doi.org/10.1016/j.automatica.2019.01.031 doi: 10.1016/j.automatica.2019.01.031 |
[8] | J. M. Mahaffy, T. C. Busken, Regions of stability for a linear differential equation with two rationally dependent delays, Discret. Contin. Dyn. Syst., 35 (2015), 4955–4986. https://doi.org/10.3934/dcds.2015.35.4955 doi: 10.3934/dcds.2015.35.4955 |
[9] | J. K. Hale, W. Huang, Global geometry of the stable regions for two delay differential equations, J. Math. Anal. Appl., 178 (1993), 344–362. https://doi.org/10.1006/jmaa.1993.1312 doi: 10.1006/jmaa.1993.1312 |
[10] | X. Long, S. Gong, New results on stability of Nicholson's blowflies equation with multiple pairs of time-varying delays, Appl. Math. Lett., 100 (2020), 106027 https://doi.org/10.1016/j.aml.2019.106027 doi: 10.1016/j.aml.2019.106027 |
[11] | C. Huang, X. Yang, J. Cao, Stability analysis of Nicholson's blowflies equation with two different delays, Math. Comput. Simul., 171 (2020), 201–206. https://doi.org/10.1016/j.matcom.2019.09.023 doi: 10.1016/j.matcom.2019.09.023 |
[12] | Q. Cao, G. Wang, H. Zhang, S. Gong, New results on global asymptotic stability for a nonlinear density-dependent mortality Nicholson's blowflies model with multiple pairs of time-varying delays, J. Inequal. Appl., 7 (2020). https://doi:10.1186/s13660-019-2277-2 doi: 10.1186/s13660-019-2277-2 |
[13] | C. Huang, X. Zhao, J. Cao, F. E. Alsaadi, Global dynamics of neoclassical growth model with multiple pairs of variable delays, Nonlinearity, 33 (2020), 6819–6834. https://doi.org/10.1088/1361-6544/abab4e doi: 10.1088/1361-6544/abab4e |
[14] | L. Van Hien, Global asymptotic behaviour of positive solutions to a non-autonomous Nicholson's blowflies model with delays, J. Biol. Dyn., 8 (2014), 135–144. https://doi.org/10.1080/17513758.2014.917725 doi: 10.1080/17513758.2014.917725 |
[15] | W. Xiong, Delay effect in the Nicholsons blowflies model with a nonlinear density-dependent mortality term, Electron. J. Qual. Theory Differ. Equation, 2017 (2017), 1–11. https://doi.org/10.14232/EJQTDE.2017.1.20 doi: 10.14232/EJQTDE.2017.1.20 |
[16] | L. Berezansky, E. Braverman, On exponential stability of a linear delay differential equation with an oscillating coefficient, Appl. Math. Lett., 22 (2009), 1833–1837. https://doi.org/10.1016/j.aml.2009.07.007 doi: 10.1016/j.aml.2009.07.007 |
[17] | L. Berezansky, E. Braverman, L. Idels, Nicholson's blowflies differential equations revisited: Main results and open problems, Appl. Math. Modell., 34 (2010), 1405–1417. https://doi.org/10.1016/j.apm.2009.08.027 doi: 10.1016/j.apm.2009.08.027 |
[18] | Y. Xu, New result on the global attractivity of a delay differential neoclassical growth model, Nonlinear Dyn., 89 (2017), 281–288. https://doi.org/10.1007/s11071-017-3453-x doi: 10.1007/s11071-017-3453-x |
[19] | G. Yang, Dynamical behaviors on a delay differential neoclassical growth model with patch structure, Math. Methods Appl. Sci., 41 (2018), 3856–3867. https://doi.org/10.1002/mma.4872 doi: 10.1002/mma.4872 |
[20] | Q. Cao, G. Wang, C. Qian, New results on global exponential stability for a periodic Nicholson's blowflies model involving time-varying delays, Adv. Differ. Equation, 2020 (2020), 43. https://doi.org/10.1186/s13662-020-2495-4 doi: 10.1186/s13662-020-2495-4 |
[21] | M. Hirsch, H. S. Smith, Monotone dynamical systems, in Handbook of Differential Equations: Ordinary Differential Equations, 2006. https://doi.org/10.1016/S1874-5725(05)80006-9 |
[22] | J. K. Hale, S. M. V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. https://doi.org/10.1007/978-1-4612-4342-7 |
[23] | H. L. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, New York, 2011. https://doi.org/10.1007/978-1-4419-7646-8 |
[24] | Z. Long, Y. Tan, Global attractivity for Lasota-Wazewska-Type system with patch structure and multiple time-varying delays, Complexity, 2020 (2020), 1–7. https://doi.org/10.1155/2020/1947809 doi: 10.1155/2020/1947809 |
[25] | L. Berezansky, E. Braverman, A note on stability of Mackey-Glass equations with two delays, J. Math. Anal. Appl., 450 (2017), 1208–1228. https://doi.org/10.1016/j.jmaa.2017.01.050 doi: 10.1016/j.jmaa.2017.01.050 |
[26] | X. Zhang, H. Hu, Convergence in a system of critical neutral functional differential equations, Appl. Math. Lett., 107 (2020), 106385. https://doi.org/10.1016/j.aml.2020.106385 doi: 10.1016/j.aml.2020.106385 |
[27] | W. Wang, W. Chen, Stochastic delay differential neoclassical growth model, Adv. Differ. Equation, 355 (2019). https://doi.org/10.1186/s13662-019-2292-0 doi: 10.1186/s13662-019-2292-0 |
[28] | Y. Xu, Q. Cao, X. Guo, Stability on a patch structure Nicholson's blowflies system involving distinctive delays, Appl. Math. Lett., 105 (2020), 106340. https://doi.org/10.1016/j.aml.2020.106340 doi: 10.1016/j.aml.2020.106340 |
[29] | C. Huang, L. Yang, J. Cao, Asymptotic behavior for a class of population dynamics, AIMS Math., 5 (2020), 3378–3390. https://doi.org/10.3934/math.2020218 doi: 10.3934/math.2020218 |