Research article Special Issues

Attractivity criterion on a delayed tick population dynamics equation with a reproductive function $ f(u) = ru^{\gamma}e^{-\sigma u} $


  • Received: 16 June 2022 Revised: 30 July 2022 Accepted: 17 August 2022 Published: 01 September 2022
  • The aim of this article is to analyze the delay influence on the attraction for a scalar tick population dynamics equation accompanying two disparate delays. Taking advantage of the fluctuation lemma and some dynamic inequalities, we derive a criterion to assure the persistence and positiveness on the considered model. Furthermore, a time-lag-dependent condition is proposed to insure the global attractivity for the addressed model. Besides, we give some simulation diagrams to substantiate the validity of the theoretical outcomes.

    Citation: Fawaz E Alsaadi, Chuangxia Huang, Madini O Alassafi, Reem M Alotaibi, Adil M Ahmad, Jinde Cao. Attractivity criterion on a delayed tick population dynamics equation with a reproductive function $ f(u) = ru^{\gamma}e^{-\sigma u} $[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 12852-12865. doi: 10.3934/mbe.2022600

    Related Papers:

  • The aim of this article is to analyze the delay influence on the attraction for a scalar tick population dynamics equation accompanying two disparate delays. Taking advantage of the fluctuation lemma and some dynamic inequalities, we derive a criterion to assure the persistence and positiveness on the considered model. Furthermore, a time-lag-dependent condition is proposed to insure the global attractivity for the addressed model. Besides, we give some simulation diagrams to substantiate the validity of the theoretical outcomes.



    加载中


    [1] X. Zhang, J. Wu, Critical diapause portion for oscillations: Parametric trigonometric functions and their applications for Hopf bifurcation analyses, Math. Methods Appl. Sci., 42 (2019), 1363–1376. https://doi.org/10.1002/mma.5424 doi: 10.1002/mma.5424
    [2] X. Zhang, F. Scarabel, X. Wang, J. Wu, Global continuation of periodic oscillations to a diapause rhythm, J. Dyn. Differ. Equation, 2020. https://doi.org/10.1007/s10884-020-09856-1 doi: 10.1007/s10884-020-09856-1
    [3] C. Huang, B. Liu, Traveling wave fronts for a diffusive Nicholson's Blowflies equation accompanying mature delay and feedback delay, Appl. Math. Lett., 134 (2022), 108321. https://doi.org/10.1016/j.aml.2022.108321. doi: 10.1016/j.aml.2022.108321
    [4] X. Li, W. Daniel, J. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica, 99 (2019), 361–368. https://doi.org/10.1016/j.automatica.2018.10.024 doi: 10.1016/j.automatica.2018.10.024
    [5] X. Li, S. Song, J. Wu, Exponential stability of nonlinear systems with delayed impulses and applications, IEEE Trans. Autom. Control, 64 (2019), 4024–4034. https://doi.org/10.1109/TAC.2019.2905271 doi: 10.1109/TAC.2019.2905271
    [6] X. Li, D. Peng, J. Cao, Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Trans. Autom. Control, 65 (2020), 4908–4913. https://doi.org/10.1109/TAC.2020.2964558 doi: 10.1109/TAC.2020.2964558
    [7] X. Li, X. Yang, S. Song, Lyapunov conditions for finite-time stability of time-varying time-delay systems, Automatica, 103 (2019), 135–140. https://doi.org/10.1016/j.automatica.2019.01.031 doi: 10.1016/j.automatica.2019.01.031
    [8] J. M. Mahaffy, T. C. Busken, Regions of stability for a linear differential equation with two rationally dependent delays, Discret. Contin. Dyn. Syst., 35 (2015), 4955–4986. https://doi.org/10.3934/dcds.2015.35.4955 doi: 10.3934/dcds.2015.35.4955
    [9] J. K. Hale, W. Huang, Global geometry of the stable regions for two delay differential equations, J. Math. Anal. Appl., 178 (1993), 344–362. https://doi.org/10.1006/jmaa.1993.1312 doi: 10.1006/jmaa.1993.1312
    [10] X. Long, S. Gong, New results on stability of Nicholson's blowflies equation with multiple pairs of time-varying delays, Appl. Math. Lett., 100 (2020), 106027 https://doi.org/10.1016/j.aml.2019.106027 doi: 10.1016/j.aml.2019.106027
    [11] C. Huang, X. Yang, J. Cao, Stability analysis of Nicholson's blowflies equation with two different delays, Math. Comput. Simul., 171 (2020), 201–206. https://doi.org/10.1016/j.matcom.2019.09.023 doi: 10.1016/j.matcom.2019.09.023
    [12] Q. Cao, G. Wang, H. Zhang, S. Gong, New results on global asymptotic stability for a nonlinear density-dependent mortality Nicholson's blowflies model with multiple pairs of time-varying delays, J. Inequal. Appl., 7 (2020). https://doi:10.1186/s13660-019-2277-2 doi: 10.1186/s13660-019-2277-2
    [13] C. Huang, X. Zhao, J. Cao, F. E. Alsaadi, Global dynamics of neoclassical growth model with multiple pairs of variable delays, Nonlinearity, 33 (2020), 6819–6834. https://doi.org/10.1088/1361-6544/abab4e doi: 10.1088/1361-6544/abab4e
    [14] L. Van Hien, Global asymptotic behaviour of positive solutions to a non-autonomous Nicholson's blowflies model with delays, J. Biol. Dyn., 8 (2014), 135–144. https://doi.org/10.1080/17513758.2014.917725 doi: 10.1080/17513758.2014.917725
    [15] W. Xiong, Delay effect in the Nicholsons blowflies model with a nonlinear density-dependent mortality term, Electron. J. Qual. Theory Differ. Equation, 2017 (2017), 1–11. https://doi.org/10.14232/EJQTDE.2017.1.20 doi: 10.14232/EJQTDE.2017.1.20
    [16] L. Berezansky, E. Braverman, On exponential stability of a linear delay differential equation with an oscillating coefficient, Appl. Math. Lett., 22 (2009), 1833–1837. https://doi.org/10.1016/j.aml.2009.07.007 doi: 10.1016/j.aml.2009.07.007
    [17] L. Berezansky, E. Braverman, L. Idels, Nicholson's blowflies differential equations revisited: Main results and open problems, Appl. Math. Modell., 34 (2010), 1405–1417. https://doi.org/10.1016/j.apm.2009.08.027 doi: 10.1016/j.apm.2009.08.027
    [18] Y. Xu, New result on the global attractivity of a delay differential neoclassical growth model, Nonlinear Dyn., 89 (2017), 281–288. https://doi.org/10.1007/s11071-017-3453-x doi: 10.1007/s11071-017-3453-x
    [19] G. Yang, Dynamical behaviors on a delay differential neoclassical growth model with patch structure, Math. Methods Appl. Sci., 41 (2018), 3856–3867. https://doi.org/10.1002/mma.4872 doi: 10.1002/mma.4872
    [20] Q. Cao, G. Wang, C. Qian, New results on global exponential stability for a periodic Nicholson's blowflies model involving time-varying delays, Adv. Differ. Equation, 2020 (2020), 43. https://doi.org/10.1186/s13662-020-2495-4 doi: 10.1186/s13662-020-2495-4
    [21] M. Hirsch, H. S. Smith, Monotone dynamical systems, in Handbook of Differential Equations: Ordinary Differential Equations, 2006. https://doi.org/10.1016/S1874-5725(05)80006-9
    [22] J. K. Hale, S. M. V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. https://doi.org/10.1007/978-1-4612-4342-7
    [23] H. L. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, New York, 2011. https://doi.org/10.1007/978-1-4419-7646-8
    [24] Z. Long, Y. Tan, Global attractivity for Lasota-Wazewska-Type system with patch structure and multiple time-varying delays, Complexity, 2020 (2020), 1–7. https://doi.org/10.1155/2020/1947809 doi: 10.1155/2020/1947809
    [25] L. Berezansky, E. Braverman, A note on stability of Mackey-Glass equations with two delays, J. Math. Anal. Appl., 450 (2017), 1208–1228. https://doi.org/10.1016/j.jmaa.2017.01.050 doi: 10.1016/j.jmaa.2017.01.050
    [26] X. Zhang, H. Hu, Convergence in a system of critical neutral functional differential equations, Appl. Math. Lett., 107 (2020), 106385. https://doi.org/10.1016/j.aml.2020.106385 doi: 10.1016/j.aml.2020.106385
    [27] W. Wang, W. Chen, Stochastic delay differential neoclassical growth model, Adv. Differ. Equation, 355 (2019). https://doi.org/10.1186/s13662-019-2292-0 doi: 10.1186/s13662-019-2292-0
    [28] Y. Xu, Q. Cao, X. Guo, Stability on a patch structure Nicholson's blowflies system involving distinctive delays, Appl. Math. Lett., 105 (2020), 106340. https://doi.org/10.1016/j.aml.2020.106340 doi: 10.1016/j.aml.2020.106340
    [29] C. Huang, L. Yang, J. Cao, Asymptotic behavior for a class of population dynamics, AIMS Math., 5 (2020), 3378–3390. https://doi.org/10.3934/math.2020218 doi: 10.3934/math.2020218
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1640) PDF downloads(66) Cited by(0)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog