Research article

Fuzzy optimal harvesting of a prey-predator model in the presence of toxicity with prey refuge under imprecise parameters


  • Received: 03 June 2022 Revised: 25 July 2022 Accepted: 07 August 2022 Published: 18 August 2022
  • The objective of this paper is to investigate the dynamic behaviors of a prey-predator model incorporating the effect of toxic substances with prey refuge under imprecise parameters. We handle these biological parameters in model by using interval numbers. The existence together with stability of biological equilibria are obtained. We also analyze the existence conditions of the bionomic equilibria. The optimal harvesting strategy is explored by taking into account instantaneous annual discount rate under fuzzy conditions. Three numeric examples are performed to illustrate our analytical findings.

    Citation: Shuqi Zhai, Qinglong Wang, Ting Yu. Fuzzy optimal harvesting of a prey-predator model in the presence of toxicity with prey refuge under imprecise parameters[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 11983-12012. doi: 10.3934/mbe.2022558

    Related Papers:

  • The objective of this paper is to investigate the dynamic behaviors of a prey-predator model incorporating the effect of toxic substances with prey refuge under imprecise parameters. We handle these biological parameters in model by using interval numbers. The existence together with stability of biological equilibria are obtained. We also analyze the existence conditions of the bionomic equilibria. The optimal harvesting strategy is explored by taking into account instantaneous annual discount rate under fuzzy conditions. Three numeric examples are performed to illustrate our analytical findings.



    加载中


    [1] A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, 1925.
    [2] V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie animali conviventi, Mem. R. Acad. Naz. dei Lincei (ser.6), 2 (1926), 31–113.
    [3] C. W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources, Wiley, New York, 1976.
    [4] C. W. Clark, Bioeconomic Modelling and Fisheries Management, John Wiley and Sons, New York, 1985.
    [5] T. K. Kar, K. S. Chaudhuri, Harvesting in a two-prey one-predator fishery: A bioeconomic model, ANZIAM J., 45 (2004), 443–456. https://doi.org/10.1017/S144618110001347X doi: 10.1017/S144618110001347X
    [6] Z. R. He, N. Zhou, Optimal harvesting for a nonlinear hierarchical age-structured population model, J. Sys. Sci. Math. Scis., 40 (2020), 2248–2263. https://doi.org/10.12341/jssms14054 doi: 10.12341/jssms14054
    [7] Q. L. Wang, S. Q. Zhai, Q. Liu, Z. J. Liu, Stability and optimal harvesting of a predator-prey system combining prey refuge with fuzzy biological parameters, Math. Biosci. Eng., 18 (2021), 9094–9120. https://doi.org/10.3934/mbe.2021448 doi: 10.3934/mbe.2021448
    [8] T. G. Hallam, C. E. Clark, Non-autonomous logistic equations as models of populations in a deteriorating environment, J. Theoret. Biol., 93 (1981), 303–311. https://doi.org/10.1016/0022-5193(81)90106-5 doi: 10.1016/0022-5193(81)90106-5
    [9] B. Dubey, J. Hussain, A model for the allelopathic effect on two competing species, Ecol. Model., 129 (2000), 195–207. https://doi.org/10.1016/S0304-3800(00)00228-3 doi: 10.1016/S0304-3800(00)00228-3
    [10] T. K. Kar, K. S. Chaudhuri, On non-selective harvesting of two competing fish species in the presence of toxicity, Ecol. Model., 161 (2003), 125–137. https://doi.org/10.1016/S0304-3800(02)00323-X doi: 10.1016/S0304-3800(02)00323-X
    [11] J. Maynard-Smith, Models in Ecology, Cambridge University Press, Cambridge, 1974.
    [12] J. Chattopadhyay, Effect of toxic substances on a two-species competitive system, Ecol. Model., 84 (1996), 287–289. https://doi.org/10.1016/0304-3800(94)00134-0 doi: 10.1016/0304-3800(94)00134-0
    [13] G. F. Gause, N. P. Smaragdova, A. A. Witt, Further studies of interaction between predators and prey, J. Anim. Ecol., 5 (1936), 1–18. https://doi.org/10.2307/1087 doi: 10.2307/1087
    [14] E. González-Olivares, R. Ramos-Jiliberto, Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability, Ecol. Model., 166 (2003), 135–146. https://doi.org/10.1016/S0304-3800(03)00131-5 doi: 10.1016/S0304-3800(03)00131-5
    [15] T. K. Kar, Stability analysis of a prey-predator model incorporating a prey refuge, Commun. Nonlinear Sci. Numer. Simul., 10 (2005), 681–691. https://doi.org/10.1016/j.cnsns.2003.08.006 doi: 10.1016/j.cnsns.2003.08.006
    [16] W. X. Li, L. H. Huang, J. F. Wang, Global asymptotical stability and sliding bifurcation analysis of a general Filippov-type predator-prey model with a refuge, Appl. Math. Comput., 405 (2021), 126263. https://doi.org/10.1016/j.amc.2021.126263 doi: 10.1016/j.amc.2021.126263
    [17] R. J. Han, L. N. Guin, B. X. Dai, Consequences of refuge and diffusion in a spatiotemporal predator-prey model, Nonlinear Anal. Real World Appl., 60 (2021), 103311. https://doi.org/10.1016/j.nonrwa.2021.103311 doi: 10.1016/j.nonrwa.2021.103311
    [18] H. K. Qi, X. Z. Meng, Threshold behavior of a stochastic predator-prey system with prey refuge and fear effect, Appl. Math. Lett., 113 (2021), 106846. https://doi.org/10.1016/j.aml.2020.106846 doi: 10.1016/j.aml.2020.106846
    [19] W. J. Lu, Y. H. Xia, Multiple periodicity in a predator-prey model with prey refuge, Mathematics, 10 (2022), 421. https://doi.org/10.3390/math10030421 doi: 10.3390/math10030421
    [20] M. Liu, C. Z. Bai, Optimal harvesting of a stochastic mutualism model with Lévy jumps, Appl. Math. Comput., 276 (2016), 301–309. https://doi.org/10.1016/j.amc.2015.11.089 doi: 10.1016/j.amc.2015.11.089
    [21] M. Liu, C. Z. Bai, Optimal harvesting of a stochastic mutualism model with regime-switching, Appl. Math. Comput., 373 (2020), 125040. https://doi.org/10.1016/j.amc.2020.125040 doi: 10.1016/j.amc.2020.125040
    [22] Q. Liu, D. Q. Jiang, T. Hayat, A. Alsaedi, Dynamical behavior of stochastic predator-prey models with distributed delay and general functional response, Stoch. Anal. Appl., 38 (2020), 403–426. https://doi.org/10.1080/07362994.2019.1695628 doi: 10.1080/07362994.2019.1695628
    [23] K. Qi, Z. J. Liu, L. W. Wang, Q. L. Wang, Survival and stationary distribution of a stochastic facultative mutualism model with distributed delays and strong kernels, Math. Biosci. Eng., 18 (2021), 3160–3179. https://doi.org/10.3934/mbe.2021157 doi: 10.3934/mbe.2021157
    [24] Y. Xie, Z. J. Liu, K. Qi, D. C. Shangguan, Q. L. Wang, A stochastic mussel-algae model under regime switching, Math. Biosci. Eng., 19 (2022), 4794–4811. https://doi.org/10.3934/mbe.2022224 doi: 10.3934/mbe.2022224
    [25] S. Q. Zhang, T. H. Zhang, S. L. Yuan, Dynamics of a stochastic predator-prey model with habitat complexity and prey aggregation, Ecol. Complex., 45 (2021), 100889. https://doi.org/10.1016/j.ecocom.2020.100889 doi: 10.1016/j.ecocom.2020.100889
    [26] S. Q. Zhang, S. L. Yuan, T. H. Zhang, A predator-prey model with different response functions to juvenile and adult prey in deterministic and stochastic environments, Appl. Math. Comput., 413 (2022), 126598. https://doi.org/10.1016/j.amc.2021.126598 doi: 10.1016/j.amc.2021.126598
    [27] R. C. Bassanezi, L. C. Barros, A. Tonelli, Attractors and asymptotic stability for fuzzy dynamical systems, Fuzzy Set. Syst., 113 (2000), 473–483. https://doi.org/10.1016/S0165-0114(98)00142-0 doi: 10.1016/S0165-0114(98)00142-0
    [28] M. T. Mizukoshi, L. C. Barros, R. C. Bassanezi, Stability of fuzzy dynamic systems, Int. J. Uncertain. Fuzziness Knowl. Based Syst., 17 (2009), 69–83. https://doi.org/10.1142/S0218488509005747 doi: 10.1142/S0218488509005747
    [29] B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Set. Syst., 151 (2005), 581–599. https://doi.org/10.1016/j.fss.2004.08.001 doi: 10.1016/j.fss.2004.08.001
    [30] M. S. Guo, X. P. Xu, R. L. Li, Impulsive functional differential inclusions and fuzzy population models, Fuzzy Sets. Syst., 138 (2003), 601–615. https://doi.org/10.1016/S0165-0114(02)00522-5 doi: 10.1016/S0165-0114(02)00522-5
    [31] D. Pal, G. S. Mahapatra, G. P. Samanta, Optimal harvesting of prey-predator system with interval biological parameters: A bioeconomic model, Math. Biosci., 241 (2013), 181–187. https://doi.org/10.1016/j.mbs.2012.11.007 doi: 10.1016/j.mbs.2012.11.007
    [32] S. Sharma, G. P. Samanta, Optimal harvesting of a two species competition model with imprecise biological parameters, Nonlinear Dyn., 77 (2014), 1101–1119. https://doi.org/10.1007/s11071-014-1354-9 doi: 10.1007/s11071-014-1354-9
    [33] D. Pal, G. S. Mahapatra, A bioeconomic modeling of two-prey and one-predator fifishery model with optimal harvesting policy through hybridization approach, Appl. Math. Comput., 242 (2014), 748–763. https://doi.org/10.1016/j.amc.2014.06.018 doi: 10.1016/j.amc.2014.06.018
    [34] T. Das, R. N. Mukherjee, K. S. Chaudhuri, Harvesting of a prey-predator fishery in the presence of toxicity, Appl. Math. Model., 33 (2009), 2282–2292. https://doi.org/10.1016/j.apm.2008.06.008 doi: 10.1016/j.apm.2008.06.008
    [35] Q. L. Wang, Z. J. Liu, X. A. Zhang, R. A. Cheke, Incorporating prey refuge into a predator-prey system with imprecise parameter estimates, Comput. Appl. Math., 36 (2017), 1067–1084. https://doi.org/10.1007/s40314-015-0282-8 doi: 10.1007/s40314-015-0282-8
    [36] K. Maity, M. Maiti, A numerical approach to a multi-objective optimal inventory control problem for deteriorating multi-items under fuzzy inflation and discounting, Comput. Math. Appl, 55 (2008), 1794–1807. https://doi.org/10.1016/j.camwa.2007.07.011 doi: 10.1016/j.camwa.2007.07.011
    [37] D. Sadhukhan, L. N. Sahoo, B. Mondal, M. Maiti, Food chain model with optimal harvesting in fuzzy environment, J. Appl. Math. Comput., 34 (2010), 1–18. https://doi.org/10.1007/s12190-009-0301-2 doi: 10.1007/s12190-009-0301-2
    [38] L. S. Pontryagin, V. G. Boltyonsku, R. V. Gamkrelidre, E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Wiley, New York, 1962.
    [39] L. A. Zadeh, Fuzzy sets, Inf. Cont., 8 (1965), 338–353. https://doi.org/10.1142/10936 doi: 10.1142/10936
    [40] D. Pal, G. S. Mahapatra, G. P. Samanta, Stability and bionomic analysis of fuzzy parameter based prey-predator harvesting model using UFM, Nonlinear Dyn., 79 (2015), 1939–1955. https://doi.org/10.1007/s11071-014-1784-4 doi: 10.1007/s11071-014-1784-4
    [41] J. Dijkman, H. Haeringen, S. DeLange, Fuzzy numbers, J. Math. Anal. Appl., 92 (1983), 301–341. https://doi.org/10.1016/0022-247X(83)90253-6 doi: 10.1016/0022-247X(83)90253-6
    [42] S. Radhakrishnan, P. Gajivaradhan, A new approach to solve fully fuzzy linear system, Int. J. Math. Arch., 5 (2014), 21–29. https://doi.org/10.12983/ijsrk-2013-p100-105 doi: 10.12983/ijsrk-2013-p100-105
    [43] K. M. Miettinen, Non-Linear Multi-Objective, Optimization, Kluwer's International Series, 1999.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1783) PDF downloads(131) Cited by(3)

Article outline

Figures and Tables

Figures(5)  /  Tables(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog