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Abstract: The objective of this paper is to investigate the dynamic behaviors of a prey-predator model
incorporating the effect of toxic substances with prey refuge under imprecise parameters. We handle
these biological parameters in model by using interval numbers. The existence together with stability of
biological equilibria are obtained. We also analyze the existence conditions of the bionomic equilibria.
The optimal harvesting strategy is explored by taking into account instantaneous annual discount rate
under fuzzy conditions. Three numeric examples are performed to illustrate our analytical findings.
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1. Introduction

The study of theoretical ecology originated from Lotka [1] and Volterra [2]. In the long run,
over-exploitation of living resources such as fisheries and forestry will threaten biodiversity and put
humanity in a very alarming situation. Bioeconomic models involving scientific management of
renewable resource exploitation have been drawing attention to the interest of many researchers [3—7]
and the references therein. For example, Clark [3,4] set the foundation in this work domain. And Kar
and Chaudhuri [5] investigated the existence of bioeconomic equilibrium as well as the optimal
harvesting policy of a multispecies harvesting model with interference. He and Zhou [6] presented an
optimal harvesting problem for a class of hierarchical age-structured model. Lately, Wang [7]
established a predator-prey model with prey refuge in fuzzy environment, simultaneously investigated
the problem on fuzzy optimal harvesting.

In recent years, the influence of toxicants on ecosystem have turned into a major environmental
problem. Mathematical modelling for handling such problems began with the work of Hallam and
Clark [8], Dubey and Hussain [9], Kar and Chaudhuri [10]. Since toxin released by one species not
only affects the growth of species themselves but also may impact that of the other species, majority of
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these models manage single species or two species models in general. Maynard-Smith [11] introduced
the effect of toxin in a Lotka-Volterra competition model due to each species producing toxin to the
other only when the other exists. Chattopadhyay et al. [12] investigated a mathematical model in view
of field observations in the Ridiga area of Tulsa in the bay of West Bengal, India and indicated that
toxin producing can be used as a biological control of planktonic blooms. As is known, toxicity may
reduce the amount of population while refuge often increases the survival rate of prey, many preys
spend most of their lives nearby or in refuges, such as holes, crevices, thick vegetation or shells, to
avoid predation. The concept of prey refuge has been concerned by scholars since Maynard-Smith [11]
and Gause et al. [13] introduced a quantity xz on prey involving refuges into the models. Extensive
literature shows that prey refuges have vital impact on population dynamics, see Gonzélez-Olivares
and Ramos-Jiliberto [14], Kar [15], Li et al. [16], Han et al. [17], Qi and Meng [18], Lu and Xia [19]
in details.

Note that the biological parameters in most literature are fixed constants. Nevertheless, any species
will unavoidably be influenced by the complexity of ecosystem itself. As a matter of fact, in real
ecosystem many biological parameters may fluctuate collaboratively with the periodically changing
environment which plays an vital effect on population growth, maturity, predation, interspecific
competition etc. These uncertainties mainly come from both natural factor and human factor, such as
forest fire, earthquake, changing climate, measuring error, limitations of tools, and missing
experimental data. The dynamic behaviors caused by these phenomenon can be investigated through
the model incorporating with imprecise biological parameters. To deal with the issue, several
approaches such as interval approach, fuzzy approach and stochastic approach have been adopted by
researchers to depict the imprecise parameters. To the best of our knowledge, stochastic approach is
widely used by Liu and Bai [20,21], Liu et al [22], Qi et al. [23], Xie et al. [24], Zhang [25,26]. The
imprecise parameters in stochastic approach are taken the place of random variables possessing
known probability distributions, while that in fuzzy approach are substituted by fuzzy sets or fuzzy
numbers with known membership functions. Bassanezi et al. [27] laid the foundation by employing
fuzzy differential equations to investigate the stability of dynamical system. Mizukoshi et al. [28], on
account of initial conditions under fuzzy conditions, discussed the stability of fuzzy dynamical
systems. Bede and Gal [29], based on generalized differentiability, considered the solutions of fuzzy
differential equations. Guo et al. [30] applied fuzzy impulsive functional differential equations in
Gompertz model and logistic model. Due to the difficulties for constructing a suitable probability
distribution or membership function, Pal et al. [31] first introduce interval approach into an imprecise
prey-predator harvesting model. Later, Sharma and Samanta [32] came up with a two species
competition harvesting model with interval parameters. Pal et al. [33] considered parameter
uncertainty in biomathematical model described by two-prey one-predator system with mutualism. In
this paper, both interval approach and fuzzy approach are considered to characterize the parameters.
We assume biological parameters involved in our model are imprecise in nature and depicted by
interval number. Since the instantaneous annual rate of discount is the difference of the inflation and
discount rates which are fuzzy in economic perspective, we consider it as fuzzy and expressed by
trapezoidal fuzzy number due to intuitive, use friendly, and computationally simple in promoting
representation.

Motivated by the model construction in [33], we analogously care to establish a two competing
and continuously harvested preys and one predator depending on two preys. Different from model (1)
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in [33], we further consider the following three aspects: the refuges on preys are introduced to protect
the preys from predation; the effects of toxic substances from environmental point of view on prey and
predator as the hot topic of the moment are considered in our model; not only predator mortality but
also intraspecific competition are taken into account which makes dynamic behaviors become more
complicated. Based on the above, our model is established as follows

d

dd_xtl = r1xl(1 - 2—11) —ax1x — (1 —myp)xyy — 71x? —q1Ex1,

dd_? = ram1 - %) — @010 = (1 = m)xy = g Exs, (1.1)
d_)t} = —dy - sy2 +e1(1 —mp)x1y + ex(1 —my)xpy — 72)72,

with initial value x;(0) > 0, x,(0) > 0, y(0) > 0. Here, x;(¢), x2(¢) and y(¢) denote the biomass
densities of two competing preys and one predator at time . r; and r, represent the intrinsic growth
rates of two preys, and K, K, are the carrying capacity of two preys, respectively. a; and a, stand
for the interspecific competition between x; and x,. ¢y, ¢, are the coefficients of predation and e,
e, are the coefficients of conversion. m; and m, severally denote the refuge of two preys. d acts
as the mortality rate of predator and s shows the intra-specific competition rate of predator. y; and 7y,
were regarded as the coefficients of toxicity to the prey and predator, respectively. Since prey is directly
infected by some external toxic substances, while predator that feed on these infected preys is indirectly
affected by the toxic substances, we call 0 < y, < y; < 1. These terms for toxicity )qxf and y,y? are
first proposed by Das et al. [34]. ¢1,¢» and E|, E; severally denote the catchability coefficients and
harvesting efforts of two preys, and also the catch rate functions ¢, E;x; and ¢, E,x, satisfy the catch-
per-unit-effort hypothesis [3]. We consider, in this paper, parameters involved are replaced by interval
numbers because of the imprecision of the parameters. Again when studying the optimal harvesting
strategy of the model, the instantaneous annual discount rate is considered as fuzziness.

The rest of this paper is emerged as follows. Section 2 presents the formulation of model with
interval-valued parameters. The positivity and boundedness of model together with the existence of
biological equilibria are discussed in Sections 3 and 4, respectively. In Section 5, we analyze the
stability of all biological equilibria. Also the existence conditions of bionomic equilibria in four cases
are obtained in Section 6. In Section 7, considering the fuzzy inflation net discount rate as a trapezoidal
fuzzy number, we investigate the optimal harvesting in fuzzy environment. Three numerical examples
and a brief summary are displayed in Sections 8 and 9, respectively. In the end, Appendices A, B and
C show some definitions and a method which will be used in previous sections.

2. Formulation of model

In classical deterministic differential model, the parameters, for instance the rates of species growth
and death, are identified as fixed constants. Nevertheless, the values of the parameters do not always
remain fixed on account of the lack of sufficient information or inaccurate understanding of ecological
phenomenon. Here we consider model (1.1) has imprecise parameters, and replace the fixed positive

constant r;, ;, ¢;, €;, Vi, d, s (i = 1,2) by interval-valued parameters 7;, @;, ¢;, d, §, €;, ¥;, respectively

Mathematical Biosciences and Engineering Volume 19, Issue 12, 11983-12012.



11986

(see Appendix A). Thus model (1.1) can be represented as:

d-xl _ 7'1 _ _ —

kit —xi — @ xixp — & (1 —m)x;y — y1x, — i E1x1,

dx. 5

X2 _ rn _ _

o T ?Xﬁ — @ x1% — Co(1 — mp)x2y — qoEnxy, (2.1)
P

dy S g _ _

1 —dy — 5y* + &,(1 — my)x;y + &(1 — ma)x2y — v2)%,

where ’7[ € [ril’ riu]’ C_l’,' € [ail’ aiu], Ei € [Ci19 Ciu]’ éi € [eil’ eiu]’ 71‘ € [Yil, Viu], j € [dl’ du]’ and § € [sla Su]’
and all above interval-valued parameters are covered in the first quadrant.

Similar to the conversion method in [31], we can write model (2.1) as the following form for p €
[0,1]:

p l-p

dx\(t;p) ryr
> _l-p 11w 2 p 1-p p 1-p p. 1-p 3
dr =ry rf X1~ K, Xy — a0y, xxy —cpe (L =my)xy = vy, xy — qiEx,
1-p
dx,)(t;p) - o s I- - 2.2
— =ry "1} X, — K“ Xy — @y "Xy = by P(1 = mo)xoy — quEaxs, (22)
2
dy(t; p)
> _ P l- P l-p.2 I-p p I-p p p.1-p. 2
7 dyd,; "y —s,5,7"y +e, e (1 —m)xiy+e, e, (1 —my)xpy—v57," v

Clearly, if we neglect the prey refuges and toxicity effect, and the mortality rate of the predator, model
(2.2) can be simplified as model (3) in [33]. Similarly, we do not consider the toxicity effect and
the prey species x,, while consider the harvesting of predator, then model (2.2) turns into system (5)
in [35].

3. Positivity and boundedness

This section guarantees the positive properties and boundedness of model (2.2) which are necessary
preparation for the subsequent results. Therefore, the theorem is proposed as follows.

Theorem 3.1. Any solution (x,(t), x2(2), y(t)) of model (2.2) is positive and bounded for all t > 0 if
initial conditions x1(0) > 0, x,(0) > 0 and y(0) > 0 exist.

Proof. The right side of model (2.2) satisfies continuity and Local Lipschitz condition on C, the unique
solution (x(7), x,(t), y(¢)) of model (2.2) meeting initial conditions x;(0) > 0, x,(0) > 0, y(0) > 0 exist
on [0, £], where 0 < & < +o00. From model (2.2), we gain the following equations

v rl’rl—l) B B B
x(t) = xl(O)[expf {ril ’r, - ”KIIM x| — a/floziupxz - c’l’lc}up(l —my)y — yflyiupx% - qlEl}ds > 0,
0
e rgz”;_p 1- 1-
x(f) = xz(O)[expf {rzz Pl — K” Xy — b, Pxy = che, P(1 —my)y — ngz}ds > 0,
0 2

!

y(t) = y(O)[expf { - dfdlll_” - (s‘l”s,ll—p + ygly;p)y + ei;pe’l’u(l —m)x; + e;l_pe’z’u(l - mz)xz}ds] >0,
0

3.1
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which together with initial conditions imply the positivity of model (2.2) for all # > 0. Under the
positivity of xy, x, and y, we have

1-p
dx; - r‘zr.
— < xi(r, " - ——x;), i=1,2. (3.2)
dt ’( il iu Ki ’)
It is easy to see that
pip
lim sup x;(f) < -2 —K; = ki.
=0 r{;riu_p
L

Then we get the following inequation from the third equation of (2.2)

dy _ _ N _
— Soley el (= mxi + ey 5, (1= ma)xs = (75,7 + v3yy," W) 33)
< yle; "l (1 —mpk + ey "€l (1= moky = (57537 + Yoy, ")yl
We obtain that ) |
e, "’ (1 —mp)k; +e,, el (1 —m)k
lim sup y(r) < L1 > 11_p1 12)1 1_2: ey
I Sp8u VoY ou

The solution of model (2.2) is bounded. Therefore, the theorem is proved. O

4. Existence of biological equilibria

In this part, the existence of all possible biological equilibria of model (2.2) are discussed in detail.
For convenience, some notations are introduced in the following

_ o -p p 1-p _ LPlp r.1-p
¥ =aya oo Q=ss."+77,,

v =dld, " (e Tl (1 —m), @y =clepPey e (1 —my)(1 - my),
1- 1- 1-p 1-

2 =dld, (e "€l (1 - my)), Dy =cheyPey"el (1= my)(1—my), 4.1)
- 1- 1-p 1-

Ty=rr /Ky To=rr, = @B, Ay =cele e (1 -m)?/Q,

_ pl-p _ Jd-pp _ _ wp 1=p 1-p p _ 2
Ly =ryr,, /Ky, 1o =1, 1 —qEy, Ay =c50, e, e, (1 —my)”/Q.

[x] [1]

Similar to the concept of BT P (biotechnical productivity) in [31], we also define BT P representing
the ratio of biotic potential to catchability coefficient, i.e., BTP = rll Prlq.

By a tedious calculation model (2.2) exists the following biological equilibria:

(1) Trivial equilibrium P;(0, 0, 0) is obviously existing.

(2) Axial equilibrium Py(x{,0,0), where x{ = (=T} + \/rlz + 4y ) (274" exists if
Ty >0 (i.e., E; < (BTP),,) holds.

(3) Axial equilibrium P5(0, x),0), where x) = /T exists if 1> > 0 (i.e., E, < (BT P),,) holds.

(4) Axial equilibrium P4(x%, 0, %), where

X = [0+ A+ T+ A+ dyly @A+ )] (277), “42)
¥ = ey el (1= m)(x - E)/Q,
exists if Yy > y0y, "E2 + ' E, is satisfied.
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(5) Axial equilibrium Ps(0, xg, y7), where
X = (EpAs + 12)/ (T2 + Ay) and 7 = ey Pl (1 —my)(x] — 2,)/Q, (4.3)

exists if Y, > I'»E, is satisfied.
(6) Axial equilibrium Pg(x7, x5, 0), where

X = [(# =T+ O DL R + 4 DT — el P (2 ),
P, '
xl)/FZ’

v _ AP 1
xy = (12 -y,

exists if either
>, (@) "2 < Yoyl P + abay 'T),
(¥ - TiT2)? 2 4y}, Talah@) " = 11T)
or
¥ <Tih, afen, "W < (hay,”) Ty < TaTa(y )y, " Y2 + ey, "T)

hold.
(7) Axial equilibrium P;(x{, x5, 0), where

X, = [(F = T\Ts) = (¥ = TiT2 + 42y TN — odt 1) (277 127T), “5)
xy = (Y2 = ey, "x)/T,

exists if the following conditions are satisfied

¥ > T, (@2as ") > Cay yl 0 + abal 7Ty,

_ _ 4.6
(¥ - T11)% > 492y Pl @),y — 1) > 0. (0)
(8) Interior equilibrium Pg(x?, x5, y”), where
1- _
, AP A @+ abad X + (Bahs + T)Q
X, = , Xy = s
1 2 i (A2 +T2)Q @7
s [e};pe‘;’u(l —m), — agla;;pe;;pe‘;’u(l —my)|x? + eél_”eé’u(l —my) (T — Bol)
- (Ax +T2)Q '
In addition, b and c are expressed as
,_ DD+ TiA + oA =0 - (@@, D, + ol " D)) “5)
- (A2 +T2)Q .
and 1_ 1_
= DT, — O I, + (a/fla/lup’fz + Q"TICYIMPEQAZ -7, - Ale)Q (4 9)

(A +T2)Q
The equilibrium Pg exists if (III) and (IV) hold, and simultaneously one of the conditions (I) and (II)
is satisfied

M b>0, c<0, () b<0, b>>dyly e, () (ErAs+ T)Q> (O, +ba " Q)x?,

(IV) [e},"e! (1 —m)Ty — &by "y el (1 — mo)lx? + ey "eh (1 = my)(Ts — Eol) > 0.

(4.10)
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(9) Interior equilibrium Po(x3, x5, y%),where

1- —
_b - b2 - 4/),1{)['}/”176' S _ _((1)2 + aglaéupg)xi + (EZAZ + TZ)Q

Xy = = » X2 = ’
2 (A2 +15)Q (4.11)
ey "l (1= m)Da — abyay ey "eh (1 — m)1x§ + ey, e (1 = my)(Ta — EoTy)
(A2 +T)Q
and b, c are defined in (4.8) and (4.9). The existence of equilibrium Py is obvious if the conditions
(I") — (III") are satisfied

b

) b<0, ¢c>0, B2>dflyl e, (V) (Brhy + Q> (O, + abal PO,

(1) [e,”e? (1 —m)Ty — abay el el (1 —m)]xS + ey "el (1 — my)(Ys — Zpl) > 0.

(4.12)

Remark 4.1. Model (2.2) has only a unique interior equilibrium P*(xi, x;,y") if the following
conditions (I'"), (II""), AV") or (II""), (AI1""), AV") are satisfied

") b>0, ¢<0, (") b=-2:YyPe, ¢>0, (") (Eahy+ Q> (D, + bl PQ)x,
(V") [e}; "€l (1 —m)Ty — abayPeseh (1 — my)lx: + eh el (1 — my) (T, — Eola) > 0,

(4.13)
where
. = b . = ~(®; + ab ), "Q)x + (Bahy + ‘I’Z)Q’
29" (Az +T2)Q (4.14)
eyt (1—m)Ty — abay, ey eh (1 —my)lx + eh el (1 — my)(y — Eol)
- Az +T2)Q '

5. Stability analysis

In this section, by applying Jacobian matrix we analyze the local stability of all biological equilibria,
and then investigate interior equilibrium Py is globally stable through constructing Lyapunov functions.
Here, the notations in (4.1) are also used in this part.

5.1. Local stability
The Jacobian matrix of model (2.2) is given by

I-p l-p

—_aP _poP _
Mlll @, "X c”c%u (1 —my)x;
_ p 1-p p 1-p
M = 1 —5, @, X) 1 M> —5C,, (1 =mp)xy |, (5.1
-p_p -p_p
e, e, (I—m)y ey e (1 —m)y M3;
where
_ l-pp _ 1p XL p 1-p__ p l-piq _ _a.pl-p 2
My =1y, rfu erlrlu X aya;, Xy —cyey, S (L=m)y =3yy,, " xi — qiE,
_ 1-p 4 l—pﬁ_ p . l-p_ _ p l-pq1 _ _ 52
My =1y, ”gu 2ryry, % @@y, X1 = €50, (1 = ma)y — qu B, (5-2)

_ _gpgl-p _ AP 1-p l=p p 1 _ l=p p 1 _ _ PP
Ms; = —d,d, 2sys, 'y +e, el (1 —m)x + ey ey (1 —mo)xy —2y5y,," .

We analyze the local stability conditions of all biological equilibria displayed in Section 4.
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Theorem 5.1. Assume that all equilibria exist, the following conclusions are true:
(1) Trivial equilibrium P(0, 0, 0) is locally asymptotically stable under the following circumstances

(BTP),, — E; <0 and (BTP),, — E; < 0. (5.3)

(2) Axial equilibrium Pz(x?, 0, 0) is locally asymptotically stable when

o’ al? ool e
(BTP),, — E, < 220y < 2020 71 (5.4)
q92 q2

(3) Axial equilibrium P5(0, xg, 0) is locally asymptotically stable in case of

p l-p p l-p—

a,,a aya, T2
(BTP), — Ey < w0 o T =2 (5.5)
q1 qi
(4) Axial equilibrium P4(x"1(, 0,y%) is locally asymptotically stable in the situation that
a? @b P + Ll (1 = my)y?
q2
(5) Axial equilibrium Ps(0, x3,y") is locally asymptotically stable provided that
@l PxT 4 P e P (1 = my)y!
(BTP),, — E, < 1%, Xt e, ( 1)y . (5.7)
q1
(6) Axial equilibrium Pg(xY, x3,0) is locally asymptotically stable on condition that
e "el (1—m)x) +ey el (1 —my)xy < dldl™” (5.8)
and P(x}, x;,, 0) is unstable.
(7) Interior equilibrium Pg(xlf, xg, y?) is locally asymptotically stable supposing that
191192 > 193, (59)

where
9 = + nyly};px’f)x’f + Doxd) + Qy”,
O =[Co(T) + 290y, x) =PI xd + () + 290y, 720 + A QXY + (0 + A)Qady”,  (5.10)
93 =[(C2 + AT + 290y, P xD)Q + ToA Q — (a5 a), @) + oy, Dy) — PQIxY x5y,

and Po(x}, x5,°) is unstable.

Proof. (1) Three eigenvalues of the variational matrix M(0, 0, 0) represent as follows
A = —df’d},‘p <0, A2= rlll_prfu —qE, and A = r;l_”rlz’u — ¢,

then P, is locally asymptotically stable under the circumstances

rlll_”rfu —q1E; <0 and rél_prgu - q,E, <0,
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i.e.,
(BTP),, — E, <0 and (BTP),, - E, <0.

We omit the proofs of (2), (3), (4) and (5) which are similar to that of (1).
(6) One eigenvalue of variational matrix M(x], x3,0) is expressed as

1 _ _ gpgl-p l-p_p 1 _ v I=p_p 1 _ v
Ag=—d;d; " +e, e (1 —m)x|+ey, e (1 —m)x,.

Other two eigenvalues of variational matrix M(x], x3, 0) are two roots of quadratic equation
A+ [T+ 29771 7)) + Toxy 1A+ [T + 290y, 7x)) = Pl = 0, (5.11)
where
T + 2)/fly};pr)x‘1’ +15x, >0,
DTy + 20y, 7x) = ¥ = \/(‘I’ — )% + 4yPy PTa(1 Ty — @by, P Ts) > 0.

By Routh-Hurwitz condition Pg is locally asymptotically stable provided that

I-p p v l-p _p v P gl-p
e, e, (I —mp)xj+ey, e (1 —m)x, <djd,™.

Analogously, we proof P;(x|, x5,0) is unstable.
(7) By simple calculation, we get the following determinant

A— My aha, " x e (1 = my)xy
AE — M| = abay " x; A~ My el P(1—ma)xs | (5.12)
ey el (L=m)y —e;"ef (1-m)y A= Ms

Then substituting interior equilibrium Pg(x?, xJ,y”) of model (2.2) and simplifying M, M>, and M3,
it yields that

P 1-p 9\ 9 p l-p 9 p l-p 9

s s s A+ (1 + 271’1171u X)Xy @@y, X cllc%u (1 = mp)xy

_ p _1-p_9 & p l-p &

|AE — M(x], x5,Y")| = 1 @, " Xy 1 A+1ox3 C5C,, (1 —mp)x;
-p_p ¥ -p_p 9 9
—e, e, (1 —my)y —e,, ey (1 —my)y A+ Qy

The form of characteristic equation is written as
X+ A + 021 + 85 =0,
where

9 =T + 27flyi;px?)xll9 +Tox) + Qy” > 0,
9 =[Ca(Ty + 29017 x0) =PIl + [T + 297y, 7x0) + AQxDY” + (T + Ap)Qady”,
93 =[([T2 + A)([T) + 290y, "xNQ + ToA 1 Q = (e, @) + oy, Dy) — PQIx) K0y’

= b2 — 4Py Pe(Ty + A)Qxlxdy” > 0.

Applying Routh-Hurwitz condition Pg(x?, xJ, ") is locally asymptotically stable if ¢, > ¢;. Also,
we demonstrate the unstability of Po(x}, x5, y*) with the same method. O
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5.2. Global stability

Next, let us consider the global stability of nontrivial equilibrium Pg. The appropriate Lyapunov
function is constructed as follows

Xy
V(xi, x2,y) = x — x7 — ! ln(x )+ h|x = ) - ln(x )| +bly-y" -y ln(y )| (5.13)
1 2
Obviously x; — x? — ﬂln(’“) >0@G =1,2)andy -y’ — ln( ) > 0, therefore we have V > 0.

Differentiating two sides of (5 13) with respect to ¢, we derive that

dv _Xi- x¥ dxi N Li(xy — x?)@ N L(y _yﬂ)ﬂ

dr X dr X5 dt y dt
— {0y + 92y PG+ D10 = x)D? + @y ” + habay, ) (xn — x))(xa — x5) (5.14)
+(chie? = bey el YA = mp)(x = x))( = ") + LTa(x — x9)°

+ (hiehey? = hey el Y1 —my)(xa — X))y — y") + Ly — y")?).

p 1-p l-p p p 1-p l1-p _p l-p p
We choose I} = ¢ ,c,, e, "€5,/(c5¢,, e, "€, and [ = c’ c /(ell e}, then (5.14) becomes

11

dV
— =+ Yy PG+ X1 = XD+ LTa(x — X0) + LQ>y — y")?
+ (a'”al;p + llayaz;p)(xl — )y — x5}
=-Y'BY,
where
Y =[x = X)), (2 = ), (v = y")]
and 1
Lo+, (o + x’f) (a laflup + lla/21a/ /2 0
B=| (o, +Lala)")/2 1T, 0

0 0 LQ

Thus & < 0 if 4T + y”ylu” X0y > (a”cx1 " llaé’la;p)Z, then Pg(x?,x3,y”) is globally

asymptotically stable.
6. Bionomic equilibria

The biological equilibrium is provided by 7 d"‘ = 0, ‘Z‘f 0 and % = 0 while the economic
equilibrium means that the total revenue is equal to the total expenses. Combine biological
equilibrium and economic equilibrium to form bionomic equilibrium, we will investigate all possible
bionomic equilibria in different cases for model (2.2) in this section.

Suppose C; and C, are the unit fishing cost for preys x; and x,, and p; and p, say the unit biomass
price for preys x; and x,, respectively. Therefore economic rent () is yield to m(xy, x2,y, E1, Ey) =

1 + 7y, where
m = (pigqixi — C)E|, m = (pagax, — Cr)E,. (6.1)
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The bionomic equilibria are constant solutions of the following equations

2

l1-p_p 117 p l-p _p1-pq _ A p1-p 3 _
ry K} =y, XX = oy, (L =m)xy =y, X = qiEx =0,
-p 1-p 2 p 1-p _ . 1-prq _ _
ry rh X =1, X, —aya, "x1x — e, (1 —my)xoy — goErx; = 0, (6.2)

—dfd;_p —5s ; Py + e1 el (1 —ml)x1y+621 Pel (1 —my)xyy — 72171 Py? =0,
m=(piqix; — C)E, + (19242)62 - Cy)E, =

The notations ¥, Q, =, Z,, Oy, ,, '}, I'5, A, A, used here are given in (4.1). Similar to the methods
in [33], we discuss possible bionomic equilibria in different cases.

Case 1. If C; > p,gax», i.e., the fishing cost is higher than the earning for prey x,. Thus we have to
stop fishing prey x, (E». = 0) and maintain the fishing of prey x; (C; < p1q;x;). Based on xj = 1%11
and E,,, = 0, let us divide into the following four situations to investigate the values of x., Y. and
Eloo-

Situation 1. If x,,, = 0 and y., = 0, solving the first equation of (6.2) yields

Eiw=(r,)"r =Yy "2 —Tixio)/qi, (6.3)

which is positive provided that r ) o>y ly{u” e+ DX

Situation 2. If x,., = 0, we solve the first and third equation of (6.2) and obtain that

Yoo = e}l pe[lju(l - ml)(lxloo - El)/Q, (6 4)
Eloo [rll rfu yllylllpx%m - (Fl + Al)xloo + AlEl]/ql,

1-p 2 = =
which are positive provided that ru rlu > 7’1171u X + 1+ ADXio — A1Ey and xjoo > E.

Situation 3. If y,, = 0, calculating the first and second equation gives

-p p 1-p
_ r 2 T = @by, X

X200 s
2 6.5)
-p p.1-p 2 -p (6.
E _ rll I"furz - yllylu I_‘z'xloo + (\Ij - F1F2)x1°° - rguallla,
loo — 5
g1l
which are ositiveifr Pyl > =py2 —(i—l“)x +mandr1pr" > a/lpx
P > Y X T 1)X1c0 P 2 loos
Situation 4. By a tedlous calculation, it follows from the first three equations that
lI-p_p p 1-p -p gp gl-p
o = 15, Q2+ (O — aya,, Q)Xo + C216‘2u d/d, "(1 —my)
« (rz + AQ)Q ’
1p I-p _p 1-p _p -p 1-p _p P g1-p
B rguey ey, (1 —my) + [The, "ey (1 —my) — aZIa/ZM e, ey, (1 —m)lxi — I'ad, d, 6.6)
yoo - ’ *
(2 + Ap)Q
1-p_p lI-p 2 1-p p 1-p
E = " T Y e — DiXie — @@y, " X000 — e, " (1 = mi)ye
loo — )
qi
e 1-p.p 1-p_ 2 p l1-p p 1-p lI-p_p I-p
ifr,"r, > 71171u Xt X + @)@, Xoe + 0y, (1 =my)ye and 1y, 1y, > max{(azlozz” - —)xloo -

erll elu(l—ml)

I-p _p
ey ey, (1=m2)

N>, [ag’,cng” - ]xlw - FzEz} are satisfied.
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Case 2. If C; > p1qxy, i.e., the fishing cost is greater than the revenue for prey x;. Then prey x; is
not fit to be fished (£, = 0). Only prey x, keeps normal capture, i.e., p»g2x, < C,. According to
X200 = % and E., = 0, we consider four situations as follows:

Situation 1. If x;, = 0, y» = 0, solving the second equation of (6.2) obtains

(r Pr) = Toxae)/qo, (6.7)

which is positive provided that r2, rg > X000
Situation 2. If x1., = 0 holds, y., and E,, can be calculated through the second and third equation of
(6.2)

Voo = e;l el (1 —my)(x2e0 — E2)/Q,

1- (6.8)
Ereo = [, "1, — (T2 + Ap)Xoe + A2E01/qn,
which are positive if 7}, "% > (2 + A2)X2e — AsZp and Xaw > Ep.
Situation 3. If y,, = 0, it follows from the first and second equation that
2 P pr1-p p 1-p
- + \/Fl + 471171u (ry, —ala; " x0)
Xloo = — )
2"}, (6.9)
r1 L N IHx
Ey = 2 Tou 2%y Aleo T 224200
qi ,
; stive if 71 7P p o 1-p l=p p o 1-p ;
which are positive if 7, rfu > @y, "X and 1, rgu > a5, X1 + [2X2 are satisfied.
Situation 4. By a careful calculation, we obtain the results as follows
2 p 1-p[ 1-p p pdl*p @
—(T) + A)) + /(T + A2 +dyly [ nrh o+ L — (% + ey, )xzw]
Xloo = p _1-p D
1-p p I-p_p Vi P g1-p 6.10
ey e\, (1 —m)xi + ey "¢y (1 —my)xze —d, d, (6.10)
oo — b
lI-p_p I-p p 1-p
Eou = ry 15, — @y, X1 = Dadow — €505, " (1 = o)y
9
1-p p (o)) 1-p d, dLIA r l prp
which are positive prov1ded that r, "r, > ( +a lalu )me - ) Ty > ozyazu P X100 + TaXoe +

czzczu”(l — M5)Yeo and eu el (1 - ml)xl00 + e21 Pel (1 —my)xpe > dfdu

Case 3. If C; > pi1qi1x; and C, > pyq2x,, the fishing cost of the preys x; and x, are greater than the
revenue. The harvesting of preys x; and x, are unworkable, so we cannot but stop the fishing of the
preys, thatis, £« = E» = 0. The existence of bionomic equilibrium is the same as that of biological
equilibria in Section 4.

Case 4. If C| < p1q1x; and C;, < prgrx,, i.e., the income of both preys is greater than the capture cost,
so the system will continue to be in operation. Therefore x;,, = % and Xy, = pfz We substitute xjo
and x,., into (6.2) and consider the following two situations.

Situation 1. If y,, = 0, E |- and E»., can be calculated by the first and second equation of (6.2)

1-p_ 2 p 1-p
Eio (rll ', - 7117114 xloo Lixieo — @y, " X200) /15

(6.11)
(rl prl’u - a/z[a/zu xloo - F2x2c>o)/q29

Mathematical Biosciences and Engineering Volume 19, Issue 12, 11983-12012.
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1-p_2

. .. . p l1-p 1-p.p p 1-p
which are positive if r rlu > 7117/1” X T X1 + @@, X2 and 1y, "ry > a5, " X100 + 122200 hold.

Situation 2. According to the first three equations of (6.2), it yields that

l-p_p l-p p P gl-p
ey e, (1 —mxi + ey, 7€ (1 — ma)xae, — d, d,
oo 9
1 -p p -PO).,2 p 1-p p g1-p
£ - L2 - 71171u Qxi, — T+ ADQxieo — (P + " Q)X2eo + d, d, 6.12)
loo — . .
1- 1 i 1
e ry 1y Q= (0 + &5, ") X100 — (T2 + A)Qxoe + ddy "
200 — »
q202
exist 1fr o> P2 4 (T 4 Ax e + (‘D] +af a )x _ d SIS (g +af cyl_p)x +
> YY1 X 1 1)X100 1%, X200 a Tu T Q 2%y JX1eo

d"d,', ’ - - .
(T + Ap)xpeo — +=— and e1 el (1 —my)xie + ezz Peb (1 —my)xpe > dlpd; P are satisfied.

Theorem 6.1. The existence conditions of bionomic equilibria are displayed in Table 1:

Table 1. The existence conditions of bionomic equilibria in four cases.

Theorem Conditions
1 4 I-p_ 2
(xlooaO’O’Eloo’O) rlpu >71ﬂ’1 xloo+rl~xloo
0, Yoo, E1eo, 0 1 b P2 L+ A _AE =
(-xloo’ sy Yoos Llcos ) > 711)’1u X0 +( 1+ l)xloo 1215 Xloo > 241
I-pp p l-p
1 -p.,p I-p_ 2 _(i _ ) To T @@y l-p_p p 1-p
(X100, X200, 0, El1co, 0) TR 71171u Yoo ~ 5 — T X100 + T, 2 Ty 1y 2 Uy, Xieo
1 -p 2 p l-p -p
ry > 7’117’1:4 Pxl, + Tixieo + @@, P20 JrC1/C (aI- m1)ym,

(X100 X205 Yoos Elco, 0) o

1-p p l-p _ d 1-p e}, L (1=my) =

Yo rpu > max{(a/yam -5 )X — A B, a/21a + loo + 1 E>
e, €y, (1-my)

(Os X200y O’ O, E2oo) }’2[ pr[?u > F2-x200
(0, X200, Yoo, 0, Eco) 1”2, 75 > (Do + Ag)Xoe — AoBa, Xoe > B
1 -p.p p 1-p I-p_p p 1-p
(xloo’ X200, 0’ 07 EZDO) 1[ rlu > allalu X200y r2[ r2u > a’/2[a‘,2u Xleo + r2~x20o
1-p
1 P [} 1- 17) _ d dtl w4 -r —
11 4 >( +afa;,” ) xae ’"21 rh, > azzazu " X1eo + TaXow + Chc 2u (I =mp)ye,

(xlooa X200 Yoos O, E2<>o)
el (1 —mp)xie + 621 Peb (1 - I’I’lz)Xzoo >d] drr
1 1-
e > by " Xioo + ToXoo
-
dral”
Q b

1-
pXZoo’ 7'2[ Pr[?

1
Xoo T TX100 + a”a o

(X1c0, X200, 0, E'tco, Ezeo) ru ”p > 7117 1u
1 i 1-p 2 @ 1-p
rlpu > ’yll’ylu Moo + (Fl + Al)xloo ( + a/”a X200 —
1-p
1 -P [ 1-p dldy”
"> (ﬁz +ay,, )xlw + (0 + Ao — 5,

1 -p,p l-p p p g1-p
e, e, (1 —mpx + e, e, (1 = my)xze0 > djd,

(X100 X205 Yoos Eloos E20)

7. Fuzzy optimal harvesting

Use r and k to represent the inflation and discount rates, respectively. They are often considered
as fuzzy parameters since the imprecision of the environment. Therefore, let the notations 7 and k
represent trapezoidal fuzzy number. § is the difference value of 7 and k standing for the fuzzy inflation
net discount rate and can be also regarded as trapezoidal fuzzy number, i.e., S = (81,02, 03,04) (see

Appendix B). And a continuous time stream of revenues Jis yield to

J= f e_gt[(qulxl — CDE\ (1) + (p2gaxa — Cr)Ex(D)]dt.
0

(7.1)
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The aim of this part is to maximize J yield to the state Eq (2.2). The control variables E;(¢) (i=1,2) are
subjected to the constrains 0 < E;(¢) < E"™ (i=1,2). On account of the method of Maity and Maiti [36],
Sadhukhan et al. [37] and Pal and Mahapatra [33], we apply the value « to cut trapezoidal fuzzy number
obtaining an interval number [0, 0g], where 6, = &1 + (9, — 1) and Og = 94 — (04 — 03)(0 < @ < 1).
Maximization of the J translate into maximization of [/, Jr] as follows

Max[J, Jr] = f e R [(p1gix; — C)E (1) + (pagaxa — Co)Ea(1)d1, (7.2)
0

where .
Ji = f e K (p1g1x1 — CE(D) + (p2gaxs — C2)Ex(1)]dt,
0

Jr = f e [(p1q1x1 — CE(D) + (p2gaxa — C2)Ex(1)]dt,
0

subject to the constrains (2.2). Consider nonnegative numbers w; and w, meeting w; + w, = 1 as two
weights as well as the method of weighted sum (see Appendix C), thus Max[J;, Jg] can be written as

MaxJ = Max[Jy, Jg] = Max(wJ. + waJr). (7.3)
We first construct the Hamiltonian provided by

H =(w1e™ + wye ) [(p1q1x1 — C)E| + (p2gaxs — C2)E5]

2
X
l-p _p 1-p71 _ _p 1-p _ . 1-prq PP 3
+/ll[r11 X =, ki @y, X1 xy =y, (L=m)xy = vy, x —qEx
2 (7.4)
1-p _ l-p™2 _ _p 1-p _ b l=peg _
+/12[r o X = Tyl %y Ay, X1X2 = C3yCo (1 = ma) X2y = qr B Xy

+ Ag[—dfd;_”y — sfsblf”y2 + e}l_pe’l’u(l —mp)xy + e;l_pegu(l — M) X2y — ygly;pyz],

where 4;, A, and A3 denote the adjoint variables. Based on Pontryagin’s maximum principle [38], the
adjoint equations are expressed as follows

di, O0H dl, O0H di;  OH (7.5)
dt B 6x1’ dt B a)CQ’ dt B 6x3' '
Together with (7.4) and (7.5), it yields to
D @'y — e 776 (1= my)y — prs (@16 + oo )E
ar %% 2 3¢ €1, my)y — piqi\we wre 1
1- rfl”}_p 1- 1- 1-
=, = 27 et = e T = my = 3y - i
dh =il xy = ey el (1= my)y — paga(wie ™™ + wreH)E,
dt 1 u 2 2u (7.6)
1- é’lré_p 1- 1-
- /12[’”21 5 =2 kzu X — ey, "x = ey, (1 —ma)y — Clez],
W e achey (1
E - lcllclu ( - ml)X1 + ZCZICZM ( - m2)x2y

- /13[—df’d;_p - 2sfs,1[py + e}l_pefu(l —m)x; + eél_pelz’u(l —my)xy — Zygly;;py].
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Introducing the interior equilibrium into (7.6), we have

da P ?
a’_tl :/11( ”kl +2y11y1u xl)xl +/12a21042u Xy — /7.3611 elu(l —my)y — p1g1(we” Rl 1,0 )Eq,
1-p
dd, _ e _ _
- /lla‘l’laiu”xl + ﬂzk—zxz — /l3e21 Peb (1 —my)y — prga(wie K 4 (e OE,,
2
dA; _ _
" /llcflciup(l —m))x; + /lzcglc;up(l my)x; + A3(s) s 5P+ 72172up)y
(7.7)
We get a third order differential equation with respect to A3 by deleting A4, and A, in Eq (7.7)
(Cl()D3 + CZIDZ + CIQD + 613)/13 = M3L€_5Rt + M3R€_6Lt, (78)
where
d Pl ] i ) ]
D=2 aomt, o= o B i)
PP b plop
21" 2u 11" 1u 1
- :[ ks ( oo 27 ) afe, s, ]xle
1 -p
1-p 1 u — 1-
[C2lc2 Pe, Pes, (1 - m)’ + Zij (SIIDS; P+ yglyZMP)]xzy
P 1-p 1
[ sal+ 72172up)( alat + 271171u x1) + Cllc ey e, (1— ml)z]xly,

plprplp

tr r
P l-p P 1-p l-p p 1-p  "21'2u ("1 lu
as _{(Sl Su " YV )[ @@, @Q,, X A +2)’1ﬂ’ X
2 1
P 1-p
1 -p,p I-p p 1-p 2 "2 & _
ey ey, (1= ml)[ y,ay, CZICZM (1 —my) 3 ”c L =my)
1-p

r
+ eél Peb (1 - mz)[a/z[a;upcflcl P11 -my) - czlc’z”p(l -m )( llkiu + 2)/”)/1 xl)]}xlxzy,

1 -p
M, :wl[plql{éRcflci;p(l —m)x; — [a”a/]u cycz/(l —my) — 21};” flc P - ml)]xlxz}El

1 -p
+ pzqz{ [ayaéupc’flc P(1—my) - c21c2u”(1 - mz)(% + nylyi;pxl)]xlxz
+ (5Rc§lc;p(1 - mz)xz}Ez],
plop
Mg =w2[P1611{5LCflCi;p(1 —mp)x; — [CY”OZ}MPC;CZMP(I —my) — lk2 flC P(1- ml)]xlxz}El
2
1 -p
17

+ quz{ - [aglaéu 1,c P =my) - c’z’lc;”(l - mz)( + nyl'yi;pxl)]XIXZ

+ 6Lc§lc§;p(1 — mg)XZ}Ez].
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The solution of (7.8) is written as follows

M M
A3 = Fle”" + erﬂzt + F3€u3[ + i€_6Rt + ﬁe_él‘t, (79)
Np Ng
where F;(i = 1,2, 3) are arbitrary constants and w;(i = 1, 2, 3) are the roots of the cubic equation

ao,u3 + al/J2 +au+az;=0 (7.10)

and

Ny = —(ap6y — a16% + a0k — a3) # 0, N = —(apd; — a,6; + ard;, — az) # 0.

It follows from (7.9) that A5 is bounded if and only if
ui<0or F;=0 (i=1,2,3).

The Hurwitz matrix is displayed as follows

aq 1 0
a a a |,
0 0 as

and assign
Ay =ai, M =aiay— a3, A =az(aiar — az).
Thus the roots of (7.10) are negative real number or complex conjugate whose real part is negative if

and only if A; > 0 (i = 1,2, 3). However A; < 0, so it is hard to make sure whether i; < 0, we have to
take F; = 0 into account. Then (7.6) can be simplified as

M M
Ay = —Lomont 4 2R ot (7.11)
N; Ng
Analogously, we obtain that
M M
A = —Loont y IR ot (7.12)
Np Ng
and
M M
Ay = —2Loont y 2R ot (7.13)
N; Ng
where
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M =w [quz{éRalya/zu X2 + [CZICZM elle (1 - ml)(l - m2) + azla'zup(sp V7 + 7’517;,7))]?62)’}152

1-p
rgl 2u

ky
-p

1

_ plQl{[ (Sl P y’z’ly;u”) + chclu eZIeZMP(l —my) ]X2y

- ~
+ 5R[ 212 Xy + (stz,_p + yé’ﬂéu")y + 5R]}El]’
)
Mg —wz[quz{5L021a2u X + [0216’2
1
e
ka
P phop |
+ 6L[2[k¢x2 + (Sllnstlt_p + Yo Yan Y+ 6L]}E1]’
2

p

_ p1Q1{[ (s7s siP 4 751)/;,4”) + C21C2u 62162 (1 - my) ]xz)’

el P(1—my)(1 —my) + @by P (Vs 7 + y2yy Dy Es

Moy =wi|prgi{oraley,"x + ey eley (1= m)(1 = mo) + ey P(s) 5,77 + vay,, D IxiyhEy

I-p

rr
_quZ{[ 11C1 pelflel p(l -—m ) + (Sl ,i P +72172up)( SR + 271171u X])]le

P 1 P
+ 6’?[(% + 271171u xl)xl + (575, P+ 721)’2up)y + 5R]}E2]

l1-p p

Mg —wz[P1Q1{5LC¥UCYl X1+ [CUC 61161 P =m)(d —my) + a”a/l p(sf ,1, P+ 7517;;”)]xly}E1

P 1-p
= pagaf|elier,meter, (L= my) + (575,77 + b 1lklu
rprl—p
+ 5L[( ”kiu + 271171u xl)xl +(sVs, " + )/21)/2up)y + 5L]}E2]

+ 271171,4 xl)]xly

The shadow prices 1;e°*" (i = 1,2,3) of the three species remain bounded as ¢ — oo, that is it satisfies
the transversality consider at co. The Hamiltonian should be maximized for E; € [0, E"**]. Suppose
that the optimal equilibrium occurs at neither E; = 0 nor E; = EI™, we therefore consider the singular

control
aH —ORt —ort
35 (w1e™" + wre™)(pr1g1x1 — C1) — Aiq1x1 =0,
]
oOH _ _
5 (1€ + wye ") (pagaxs — Cy) — Aagaxy = 0,
P
i.e.,

A = (w17 + wre ) (py — C1/(q1x1)),
Ay = (w17 + wre™)(py — Ca/(gax2)).

Substituting the values of A, and A, in (7.12) and (7.13) into (7.15), we get

Mje %% + M}Qe_‘s” Ci(wie ™" + wye™),

Mze™ K 4 Mze ™ = Cy(w e + wae ™),
where
1 _ M 1 _ M
M = (wlpl - N_ILL)QIXI’ My = (wzpl - N_IRR)QIXI,
— M 2 _ M,
M; = (wlpz - N—ZLL)szz, Mg = (0)2172 - N—Q:)@xz-

(7.14)

(7.15)

(7.16)

(7.17)
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By a simple calculation, (7.16) can be written as

(M| — Ciw)e” =201 = (M} — Cwy),

(M? — Crw)e P01 = (M2 — Crw»). (7.18)
The next step is to discuss two cases:
Case 1. If Mi # Ciwq and M% # Chwy, then (7.18) is equivalent to
(M} — Crw)(Mg — Cow) = (M} — Cow)(My, — Cwy). (7.19)
Case 2. If M i = Cyw; or Mi = Chwy, one of the following equations is true
M} - Ciw, = My — Ciw, = 0, or M; — Crw; = Mz — Cow, = 0. (7.19)

On account of the method in [35], differentiating both sides of the equations in (7.15) with respect to ¢,
one has

d/ll ( —Opt 6Lt( I-p_p rflri;p p 1-p p l1-p 1 ) p l-p 2 E) Cl
— =(w1e % + wye P — xi—aa x,—cle - m)y — X
dt 1 ) ST ky 1 U 1 2 1% 1u ( Y =YY X1~ q1E a1
Cy
— (Grwi €™ + 6pwre™ ) (pr — ——),
q1x1
d/lz ( —Opt —6Lt)( l—prp rglr;up p l1-p p 1-p ( ) E) G
— =(w;e” % + wye r - x—-aa, Px—che -m
dt 1 2 2 Tou ks 2T @y, X1 T GGy, 2)y — q2£2 4272
_ _ C,
— (Orwie " + S wae 6L’)(p2 - —)
q2x2 (7.20)
Substituting (7.15) into (7.6) and eliminating A3 yield
da, _ _ C, - _ _
I =(w1€ % + wye 5”)(192 - —x)aglaéupxz — P1qi(wie”% + we " E,
2X2
1-p
C it -
- e s et = o)t <2l
_ My _ M;g _
UC Lha- ml)y—37fﬂ/1u X —41E1] - (N—Le ot R 6”) }, Pel (1 —my)y,
dd, —Grt —ort 1 p 1-p —Ogt -8t (7.21)
i =(w1e”" + wye )(Pl - q_x>a”a/1” X1 — pagp(w1e” + wye "M)E,
1X1
Co \r gz”é ’ -
— (wie™" + wze_m)(l?z - @)[rzz "y =2 kzu X, — @y, X

M M

1- 3L s 3R g1\ 1

—chiey P (1 —my)y — 42E2] - (N_Le R+ TRe Lt) 5 s (1 —mp)y.

Consider m; = (p1q1x1 — C1)E; > 0 and 7, = (pagax; — C2)E, > 0. The simultaneous Eqs (7.20) and
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(7.21) with E; and E, omitted get

_ _ Ci
— (Ogrw e + S wse 6L[)(P1 - —)
qi1x1
l-p
(& C r
_ —Ogt —ort 2 1-p 1 ~Ort = AYAR Rt p_l-p
= (w1e” " + wse L)(p2— s )ayazu Xy — 7 (wle ¥+ we L)(k—l + 29171, x1)
p l-p
—_ —ORt o[, 1-p.p AL 1u _p l-p  p l-p1 A p 1-p 2
pi(wie + woe )[ ry T, =2 k Xy — @y, Xy —cp ey, (L —m)y =3y v, % ]
M, _ Mg _5 .\ 1-
( e Rl 4 o 5”) el (1 —my)y,
NL NR lu
7.22)
_ _ (6 .
— (Ogwie " + SLwse 6”)(192 - —)
q2Xx3
1-p
_ _ Ci i C, _ s T
= (wie " + wye 6L’)(p1 - —)cx z“mpxl (w1 + e o) 2L EL
q1X1 p) )
l—p

_ ~Ort —ort 14 _ . p 1-p_p l-pq
pa(wie™ " + woe )[rzz . 2 k X, — b, Pxp — b, P(1 —my)y

M M
( 3Le—6m + 3Re—6Lt) I-p p (1 _ mz)y.

e e
NL NR 21 T2u

Dividing e’ from both sides of the above two equations and merging similar terms in (7.22) yield

M;
e—(éR—éL)t{ — S Al — 1Ay + WAy + W Ay + —= e, el (1- ml)y}

NL
_ M3R 1-p p
= 6L(,t)2A1 + 0)2A2 - (1)2A3 - (,()2A4 Tell elu(l - ml)y,
MR (7.23)
6_(6R_6L)t{ —O0rw By — w1 By + w1 B3 + w By + —NXL eél Peb (1 - mz)Y}
L
= 6,w.B B B By = Moy g
= 0pwWab + Waby — Wab3 — Wy 4—N—R€2, e, (1 —my)y,
where .
1
Av=pi—gn A (p2 qzxz)azlazu Xy, Az = gf( - :” + 2 )
P l-p
Ay = pl[ 1= oy — 2t ” Ty, — allalu Xy — c”clup(l —mp)y — 37”)/1u X ],
1 r”ru
Bi=p,- quz » B> ({71 fhxl) Iljlallu X1, By = 51:22 kj ’
P
B, = pz[rﬂ ry — 222 ” 2wy, — azla;u x| — szczup(l - mg)y]
Analogously, consider two cases as follows:
Case 1. Suppose that
Srw1 A Ay — 1 As — 1Ay # L 1pgp (] _ 7.24
RWIA] + WAy — W1A3 — W1 Ag # N e, e, (1 —mpy (7.24)
L
and M,
Srw\Bi + W By — w1 By — w By # NLe;l Pl (1 —my)y, (7.25)
L
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then let us divide both sides of the first equation by that of the second equation of (7.23)

M3y 1-p p Mag 1-p p

OrRW1A1+w1Ar— w1A3 w1A4——e” Elu(l ml)y _ SpwrAj+wrAy— a)zAz w2A4——e” elu(] m1)y (7 26)
Orw1 B1+w1By—w|B3—w| Bs— NlLeél Ezu(l mz)y OrwrB+wyBy—wyB3— sz4—%e;lpe§u(l mz)} ’
Case 2. Assume that
M3L 1-p p
6Ra)1A1 + U)]A2 - (U]A3 - a)1A4 NL ell elu(l — ml)y (727)
or
M%L 1 -p D
Orw1 B + wiBy — wBy —w By = TL 2 €2u(1 — mg)y, (728)
then we have
Ms; ol
OrwiA| + W Ar — WAz — WAy — , € JPel (1 —my)y
L M (7.29)
3R 1
= 0rwiA| + WAy — wWrA3 — WAy — N e”pe’]’u(l ml)y =0,
or
Ms;,
6L(,t)zBl + 0)2B2 - 0)233 - U)2B4 - 761[ pep (1 ml)y
L M (7.29)
3R 1-
=0,wyB; + wyB; — wyB3 — wWyBy — N - €y pe;’u(l —my)y = 0.
In addition, on account of the interior equilibrium, the values of E; and E, are written as
1-p p _1-p 1-p p.1-p
_ r” ", rf[rlu Xooayy, X — ey, (- ml)y Y1V 2
C]l klch q1 q1 q1 (7.30)
P rp p _l1-p -p :
r, 2 T o X @, CZZCZM (1 —my)
E, = - - Xy — v,
75} kag> 92 g2

then solving (7.19)(or (7.19)), (7.26)((7.29) or (7.29)"), (7.30) together with the right side of the third
equation equaling to 0 in (2.2), we get the optimal equilibrium solutions x; = x5, X, = x,5, y = x5 as
well as the optimal harvesting efforts £y = E 5, E> = Ej5.

8. Numerical simulations

We show three numerical examples, in this section, to explain the theoretical results of model (2.2).
Example 1. Set the value of parameters in model (2.2) as follows: [ry,r,] = [9.99,10.01],
[r2, 2] = [3.99,4.01], [ay;, @1.] = [0.09,0.11], [y, @2,] = [0.19,0.21], [c1, c1.] = [0.29,0.31],
[CQ],CQM] = [019,021], [e”,elu] = [029,031], [62],€2u] = [019,021], [’)/1],’)/],4] = [019,021],
[v21, Y2.] = [0.09,0.11], [d},d,] = [0.19,0.21], [s;, 5,] = [0.09,0.11], K; = 100, K, = 200, m; = 0.20,
my = 0.15.
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Table 2. Equilibrium points for different p.

Equilibrium 0 0.2 0.5 0.8 1 41,92, E1, E2)

Py (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) 0.7000,0.5000,20.00,10.00
Py (0.4584,0,0) (0.4751,0,0) (0.5002,0,0) (0.5253,0,0) (0.5421,0,0) 0.9900,0.3000,10.00,20.00
P3 (0,0.0499,0) (0,0.2492,0) (0,0.5494.,0) (0,0.8509,0) (0,1.0526,0) 0.1000,0.1000,99.90,39.89
Py (5.4569,0,4.8000) (5.4841,0,5.1269) (5.5224,0,5.6528) (5.5576,0,6.2239) (5.5792,0,6.6313) 0.2000,0.2000,10.00,10.00
Ps (0,20.9179,14.4011) (0,20.2287,14.7964) (0,19.2304,15.4039) (0,18.2740,16.0292) (0,17.6591,16.4564) 0.5000,0.1000,10.00,10.00
Ps (4.5474,1.7482,0) (4.5209,3.1658,0) (4.5022,5.0333,0) (4.5040,6.6567,0) (4.5143,7.6328,0) 0.5000,0.3000,10.00,10.00
Py (0.7214,11.8954,0) (0.6933,12.5451,0) (0.6396,13.6114,0) (0.5704,14.7933,0) (0.5151,15.6460,0) 0.8500,0.3600,10.00,10.00
Pg (4.5899,2.2009,5.5014) (4.6354,1.9690,5.7178) (4.7012,1.6303,6.0562) (4.7642,1.3101,6.4111) (4.8048,1.1017,6.6570) 0.3500,0.2000,10.00,10.00
Py (0.7764,6.2295,4.4373) (0.5169,6.6954,4.8209) (0.2811,6.9559,5.2697) (0.1063,7.0356,5.6740) (0.0093,7.0328,5.9315) 0.8000,0.2910,10.00,10.00

We show the values of nine equilibria with different p € [0, 1] in Table 2, respectively. From Table
2, Py is fixed at (0,0,0) with variable p € [0, 1]. For P,, P; and P,, the values of preys x;, x, or predator
y increases and another is invariant in zero with increasing p; For Ps, prey x; is decreasing while
predator y is increasing and prey x; always stays at zero with increasing p; For Pg, prey x; decreases
and then increases while prey x, increases and predator y keeps in zero with increasing p; For P, the
prey x; maintains decreasing while prey x, increases and predator y keeps in zero with increasing p;
For Pg, prey x; and predator y are increasing while prey x, decreases with increasing p; For Py, prey
x1 is decreasing while prey x, increases and then decreases, predator y always maintains increasing.

p=0 —x p=0.2 —x p=05 —x

5
5
5

population(x, x,.)
population(x, x,.)
population(x, X,.¥)

@
uw
«

(@ (b) (©

0 5 10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
time(t) time(t) time(t)

°

©

p=0.8 —_ p=1 —

>

5
5

o

population(x1,x2.y)
N

©

population(x, x,.y)
population(x, x,,.y)

o
o

|

(d) (e) (f)
0 0 0
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 [ 01 02 03 04 05 06 07 08 09 1

time(t) time(t) P

Figure 1. (a)—(e) Time series diagram of three species (xi, x,, y) with initial values (5,15,10)
and g; = 0.5, =02,E, =7,E, = 10forp =0,p =02,p =05,p =08 and p = 1,
respectively, ¢ € [0, 50]. (f) Variation of interior equilibrium Pg(x”, xJ, y”) with respect to p.

From (a)—(e) of Figure 1, we display time series of three species (xj, x,,y) with initial values
(5,15, 10) for different p. The initial fluctuates for all species gradually trend to a stable condition
level Pg with time. Also the variation of interior equilibrium Pg with respect to p is shown in Figure
1(f), respectively. It is easily recognize that the interior equilibrium changes for different p. As p
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10 10 10
p=0 p=0.2 p=0.5
8 8 8
6 6 6
4 4 4
2 2 2
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2 2 2 2
x, o o x, x o o

Figure 2. (a)—(e) Phase trajectories of preys xi, x, and predator y with different initial values

andg; =05,¢,=02,E, =7, E; =10forp=0,p=02,p=05,p=08and p = 1,
respectively.

increases, prey x; and predator y increase and prey x, decreases.

The phase trajectories of preys x;, x, and predator y corresponding to interior equilibrium Pg with

different p are shown in Figure 2, respectively. Meanwhile, the interior equilibrium Py is also stable
under different initial conditions.

Example 2. Assign the value of parameters in the model (2.2) as follows: [ry;, r1,]
[ro, 2] = [7.99,8.01], [, a1.] = [0.29,0.31], [, @] = [0.29,0.31], [c1;,c1,] = [0.09,0.11],
[CZI’ CQL!] = [019’ 021]’ [e]l’ elu] = [019’ 021]’ [6217 eQu] = [019’ 021]’ [)’lla')’lu] = [009, 011]’

[ya1, y2ul = [0.19,0.211, [dy, d,] = [0.29,0.31], [s1, su] = [0.19,0.21], K; = 300, K> = 100, m; = 0.30,
ms = 0.10, p; = 15, p» = 20, C; = 30, C, = 25, ¢; = 0.8, ¢ = 0.5.

= [4.99,5.01],

Table 3. Nontrivial bionomic equilibrium for different p.

P Nontrivial bionomic equilibrium
(X100, X205 Yoo E1c0s E2e0)

0 (2.50,2.50,1.07,4.25,13.62)

0.2 (2.50,2.50,1.14,4.30,13.64)

0.5 (2.50,2.50,1.25,4.37,13.65)

0.8 (2.50,2.50,1.37,4.44,13.67)

1

(2.50,2.50,1.45,4.49,13.68)
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We present the nontrivial bionomic equilibrium for different p in Table 3. With increasing p, x|«
and x,,, are invariable while y.,, £, and E,., increases.

Example 3. Consider the following parameter values: [ry;, ry,] = [3.99,4.01], [ry, r2,] = [4.99,5.01],
[ay;, a1,] = [0.029,0.031], [a@y, @] = [0.039,0.041], [c1;, c14] = [0.19,0.21], [ca, €2 ] = [0.39,0.41],
lei, e1.] = [0.09,0.11], [ea, e2,] = [0.19,0.21], [y1, ¥1.] = [0.0009,0.0011], [d;,d,] = [0.39,0.41],
[s, 5.1 = [0.19,0.21], [y, 2.1 = [0.0039,0.0041], K; = 50, K, = 45, m; = 0.4, m, = 0.5, p; =5,
p>=10,C; =15,C, =20,q, =04, g, =0.5,6; =0.07, 6, = 0.08, 65 = 0.09, 6, = 0.1.

v, for p=0

0.8240
0.8220
5 0.8200
o.8180

0.8160

Figure 3. (a)-(e) Three-dimensional histogram of the optimal equilibrium and optimal
harvesting efforts for fixed p = 0.

Table 4. Optimal equilibrium and optimal harvesting effort for p = 0.
w ow, a=0 =03 =06 =09

Esky) | (i Ey)
0.8195,0.4140) (18.2226,17.2341,10.3281) (0.8192,0.4138)
0.8204,0.4145) (18.2213,17.2339,10.3277) (0.8197,0.4141)
0.8193,0.4139) (18.2217,17.2339,10.3278) (0.8196,0.4140)
) ) )
) ) )

Ey;, Exp)
0.8209,04147)
0.8198,04142)
0.8197,04141)
)
)

(13 %23 3) Ey; Ey)
(18.2165,17.2335,10.3264)  (0.8216,0.4151
(18.2205,17.2337,10.3274)  (0.8201,0.4143
(

(

(

(
) )
) )
18.2233,17.2339,10.3282) (0.8190,0.4137)
) | )
) ( )

i3 X3 Yi)
18.2184,17.2337,10.3269)
18.2212,17.2338,10.3276)
18.2215,17.2339,10.3277)
)
)

i3 X3 3i) X135 125 J5)
18.2218,17.2341,10.3279
18.2194,17.2339,10.3272

)
)
18.2222,17.2341,10.3279)
)
)

0.1 09
03 07
05 05
07 03
09 0.1

18.2226,17.2341,10.3281
18.2219,17.2341,10.3279

0.8192,04138) (18.2216,17.2339,10.3278)  (0.8196,0.4141
0.8194,0.4139) (18.2225,17.2340,10.3280) (0.8193,04138

18.2231,17.2339,10.3282
18.2188,17.2337,10.3270

0.8190,0.4137
0.8207,0.4146

18.2201,17.2337,10.3273)  (0.8202,0.4144
18.2270,17.2343,10.3293)  (0.8175,0.4129

AAAAA,«
— e — o — | —
| —
P

Table 5. Optimal equilibrium and optimal harvesting effort for p = 0.2.
wowy =0 =03 =06 =09

Esky) | (i Ey)
1.0892,0.5537) (17.6714,16.7450,10.5306) (1.0885,0.5532)
1.0884,0.5532) (17.6714,16.7450,10.5306) (1.0885,0.5533)
1.0889,0.5535) (17.6696,16.7448,10.5300) (1.0892,0.5537)
) ) ( )
) ) )

Ey;, Ey)
1.0902,0.5542)
1.0879,0.5530)
1.0887,0.5534)
)
)

X35, %35:Y5) Eys Ey)
17.6703,16.7449,10.5302)  (1.0889,0.5535
17.6724,16.7449,10.5308)  (1.0881,0.5531

( (

( ) ( )
( ) ( )
(17.6655,16.7445,10.5288) - (1.0908,0.5546)
( ) )
( ) ( )

i3 X3 Yi)
17.6670,16.7447,10.5293)
17.6729,16.7450,10.5310)
17.6708,16.7449,10.5304)
)
)

i3 X3 3i) X135 125 J5)
17.6694,16.7450,10.5300
17.6715,16.7451,10.5306

)
)
17.6702,16.7450,10.5302)
)
)

0.1 09
03 07
05 05
07 03
09 0.1

17.6717,16.7451,10.5307
17.6736,16.7453,10.5313

1.0883,0.5532) (17.6712,16.7450,10.5305) (1.0885,0.5533
1.0876,0.5527) (17.6719,16.7451,10.5308) (1.0883,0.5531

17.6708,16.7449,10.5304
17.6725,16.7451,10.5309

1.0887,0.5534
1.0880,0.5530

17.6708,16.7448,10.5304) (1.0887,0.5534
17.6741,16.7451,10.5314)  (1.0874,0.5526,

AAAAA,«
— | —
[P
— | —
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Figure 4.

harvesting efforts for fixed @ = 0.3.

(a)—(e) Three-dimensional histogram of the optimal equilibrium and optimal

Table 6. Optimal equilibrium and optimal harvesting effort for p = 0.5.

w owy a=0 =03 =06 =09

(%15 %35,35) (Ey5,Ex) (%15, %25,)5) (Eys, Ex) (%13 %25, 3) (Eys,Ex) (%1325, 35) (Eys, Ex)
0.1 09 (16.7656,16.0318,10.8083) (1.5075,0.7747) (16.7637,16.0315,10.8076) (1.5083,0.7751) (16.7640,16.0315,10.8077) (1.5082,0.7750) (16.7703,16.0318,10.8097) (1.5057,0.7736)
03 0.7 (16.7671,16.0318,10.8087) (1.5069,0.7744) (16.7666,16.0316,10.8085) (1.5072,0.7745) (16.7666,16.0315,10.8085) (1.5072,0.7745) (16.7669,16.0315,10.8086) (1.5071,0.7744)
0.5 05 (16.7662,16.0317,10.8084) (1.5073,0.7746) (16.7661,16.0316,10.8083) (1.5074,0.7746) (16.7670,16.0315,10.8086) (1.5070,0.7744) (16.7659,16.0314,10.8083) (1.5076,0.7747)
0.7 03 (16.7666,16.0317,10.8085) (1.5071,0.7745) (16.7662,16.0316,10.8084) (1.5073,0.7746) (16.7636,16.0313,10.8075) (1.5084,0.7752) (16.7681,16.0316,10.8090) (1.5066,0.7742)
09 0.1 (16.7659,16.0318,10.8084) (1.5074,0.7746) (16.7687,16.0318,10.8092) (1.5063,0.7740) (16.7651,16.0315,10.8081) (1.5077,0.7748) (16.7656,16.0315,10.8082) (1.5076,0.7747)

Consider different combinations of w;,w,,@ and p, the optimal equilibrium and optimal harvesting

effort are displayed in Tables 4-8, respectively. From Tables 4—8, when p fixed, the values x,3, x»3, V3
and E;, E,; fluctuate in a small range with respect to wy, w, and a. Besides, if we fix some variables
wi, w;p and a, prey x;5 and x,; are decreasing while predator y; and optimal harvesting efforts of two
preys E,3, E,5 are increasing with the increase of p. To better support our results, we select part of the
data in Tables 4-8 to draw Figures 3 and 4. In Figure 3, p is fixed at zero while w; and a are wandering
from O to 1, respectively. The values of x,3, x,5, y5 and E5, E,; oscillate on a small scale. Considering
a = 0.3 in Figure 4, x,3, x,5, 5 and E 5, E,5 fluctuate in a small range when we fix p and adjust wy; x5
and x,; are decreasing, but y;, E,5, E,5 are increasing with the development of p and w, fixed.

Table 7. Optimal equilibrium and optimal harvesting effort for p = 0.8.

w owy a=0 =03 =06 =09

(13, %35:)5) (Egz, Eyp) (%13, 25,)5) (Eg5, Exp) (g3, %35 )5) (Egz, Eyp) (%13, 25,)5) (Eg5, Exp)
0.1 09 (15.7668,15.3436,11.0469) (1.9447,1.0127) (15.7635,15.3432,11.0458) (1.9460,1.0135) (15.7657,15.3433,11.0465) (1.9452,1.0130) (15.7681,15.3434,11.0474) (1.9443,1.0124)
03 0.7 (15.7662,15.3434,11.0467) (1.9450,1.0129) (15.7647,15.3432,11.0461) (1.9456,1.0132) (15.7640,15.3430,11.0458) (1.9459,1.0134) (15.7689,15.3433,11.0476) (1.9440,1.0123)
05 05 (15.7661,15.3434,11.0466) (1.9450,1.0129) (15.7659,15.3433,11.0466) (1.9451,1.0129) (15.7653,15.3431,11.0463) (1.9454,1.0131) (15.7623,15.3429,11.0452) (1.9465,1.0138)
0.7 03 (15.7679,15.3436,11.0473) (1.9443,1.0125) (15.7654,15.3433,11.0464) (1.9453,1.0131) (15.7657,15.3432,11.0465) (1.9452,1.0130) (15.7645,15.3430,11.0460) (1.9457,1.0133)
09 0.1 (15.7686,15.3437,11.0476) (1.9440,1.0123) (15.7649,15.3433,11.0463) (1.9455,1.0131) (15.7690,15.3435,11.0477) (1.9439,1.0122) (15.7625,15.3430,11.0454) (1.9464,1.0137)
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Table 8. Optimal equilibrium and optimal harvesting effort for p = 1.

w ow, a=0 =03 =06 =09

(X3 %33 3) (Eis En) (X135, )5) (Eis Exy) (X3 %33 ¥5) (Eis Ey) (X135, )5) (Eiz Ex)
0.1 09 (15.0484,14.8987,11.1786) (2.2472,1.1825) (15.0471,14.8984,11.1781) (2.2477,1.1828) (15.0500,14.8985,11.1791) (2.2467,1.1821) (15.0440,14.8980,11.1768) (2.2490,1.1836)
03 0.7 (15.0490,14.8986,11.1787) (2.2470,1.1824) (15.0483,14.8984,11.1784) (2.2473,1.1826) (15.0476,14.8982,11.1781) (2.2476,1.1828) (15.0494,14.8983,11.1788) (2.2470,1.1823)
0.5 05 (15.0477,14.8985,11.1783) (2.2475,1.1827) (15.0474,14.8983,11.1781) (2.2477,1.1828) (15.0497,14.8984,11.1789) (2.2468,1.1823) (15.0481,14.8982,11.1783) (2.2475,1.1826)
0.7 03 (15.0484,14.8986,11.1785) (2.2472,1.1825) (15.0488,14.8984,11.1786) (2.2472,1.1825) (15.0488,14.8983,11.1786) (2.2472,1.1825) (15.0477,14.8981,11.1781) (2.2476,1.1828)
09 0.1 (15.0459,14.8985,11.1777) (2.2482,1.1831) (15.04606,14.8984,11.1779) (2.2479,1.1829) (15.0476,14.8983,11.1782) (2.2476,1.1827) (15.0443,14.8980,11.1770) (2.2489,1.1835)

9. Conclusions

Biological parameters, in the ecosystem, may oscillate simultaneously with the environment. Thus
some biological parameters such as intrinsic growth rate of prey (r), interspecific competition (),
predation coefficient (c), mortality rate (d), intra-specific competition rate (s) can be regarded as
imprecise parameters. Furthermore, refuge may increase the survival rate of prey while toxicity often
reduces the amount of population. In view of these points, we have introduced interval-valued
function into a prey-predator model with prey refuges and toxicity.

Then we have researched the boundedness and positivity of the model (Theorem 3.1). Also the
existence and stability of equilibria have been studied (Theorem 5.1). Table 1 has shown the existence
conditions of bionomic equilibria in four cases. The highlight part in the paper is to consider the
inflation net discount rate as trapezoidal fuzzy number, and solve the fuzzy optimal harvesting problem.

Numerical simulations are good methods to provide visual conclusions for the dynamic behaviors
of the model. Table 2 shows the nine equilibria for different p. Figure 1 reflects local stability of
interior equilibrium with different p, and the corresponding phase portraits of interior equilibrium of
the model are also presented in Figure 2. Table 3 clearly displays the bioeconomic equilibria in four
cases. Last but not least, Tables 4-8 and Figures 3 and 4 present the optimal equilibrium and optimal
harvesting effort on the different combinations of w;, w,, @ and p.

In this paper, we just consider the impact of present time depicted by ordinary differential equation,
while ignoring the impact of past time, the subsequent work will introduce time delay into our model to
establish delay differential equation. This paper employs a-cut of trapezoidal fuzzy number to describe
the inflation net discount rate. But other forms of fuzzy numbers, for instance, triangular fuzzy number
and normal fuzzy number, are also significant in fuzzy set theory. Future work will focus on applying
these kinds of fuzzy numbers to describe imprecise parameters.
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Appendix
A. Basic concept of interval number

Definition A.1. [3]] Interval number: An interval number A is expressed as closed interval [a",a™]
and defined by A = [a",a™] = {x|la" < x < a™,x € R}, where R is the set of real numbers and a",a™
denote the left and right limits of the interval number, respectively. Also, every real number can be
represented by the interval number [a, a), for all a € R.
Definition A.2. [31] Interval-valued function: Let a > 0, b > 0 and consider the interval [a, b]. From a
mathematical point of view, any real number can be represented on a line. Similarly, we can represent
an interval by a function. If the interval is of the form [a, b), the interval-valued function is taken as
h(p) = a'=Pb” for p € [0, 1].

For any two interval numbers A = [a",a™] and B = [b",b™], we define arithmetic operations on
interval-valued functions as follows:

Addition: A+ B = [a",ad™]+[b", b™"] = [a"+b",a™ + b™] if a" + b" > 0. The interval-valued function
for the interval A + B is considered as h(p) = (a¥)'"P(a™)? where aV = a" + b" and a™ = a™ + b™.
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Subtraction: A — B = [d",a™] — [b",b"] = [a" — b",a™ — b"] if a" — b™ > 0. The interval-valued
function for the interval A — B is taken for h(p) = (bV)!7(b™)? where b = a" — b™ and bM = a™ - b".

Scalar multiplication:

laa®, aa™] ifa >0

ad = ald’.a ]:{ [@a™, aa"] ifa <0

if a">0.
The interval-valued function interval @A is known as:
h(p) = V)'"POMY ifa >0 and h(p) = -wW")'PWNY ifa <0,

where VMV = aa”, VY = aa”, w¥ = |a|a™ and w" = |a|a”.

B. Basic concept of fuzzy set

Definition B.1. [39] Fuzzy set: A fuzzy set A in a universe of discourse X is defined as the following
set of pairs A = {(x, uz(x)) : x € X}. The mapping puz : X — [0, 1] is called the membership function

of the fuzzy set A and g is called the membership value or degree of membership of x € X in the fuzzy
set A.

Definition B.2. [40] a-cut of fuzzy set: The a-cut of a fuzzy set Aisa crisp set which is defined by A, =
{x:uz(x) > a}, @ € (0,1]. For a = 0 the support of A is defined as Ay = Supp(A) = {x € R, uz(x) > O}.

Definition B.3. [39] Convex fuzzy set: A convex fuzzy set A is a fuzzy set on a continuous universe
satisfying that A, is a convex classical set for all a.

Definition B.4. [41] Fuzzy number: A fuzzy number is a convex fuzzy set with X = R.

Definition B.5. [42] Trapezoidal fuzzy number: A fuzzy number A = (ay,as, a3, ay) is defined as a
trapezoidal fuzzy number if its membership function satisfy

O, x < da;

xX—a

a1 <x<a
ur=4 1, a, < x<ay

as—x

wa B <x<ay

0, X>ay

The pictorial form of trapezoidal fuzzy number is presented by the Figure B1 given below
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Figure B1. Trapezoidal fuzzy number A= (ai,ay,as,as).

As per definition of trapezoidal fuzzy number the a-cut is a bounded closed internal [A; (@), Ar(@)],
where Ay (@) = inf{x : uz(x) > a} = a; + a(ay — a;) and Ag(@) = sup{x : uz(x) > a} = a4 — alas — as).

C. Weighted sum method

Utility functions Y;(J;), in weighted sum method [43], are defined for each objective according to
the significance of J; relative to the other objective functions. Then define a total or overall utility
function Y as listed below:

p= ) YiJx). (C.1)
i=LR
The solution vector x* is obtained through maximizing the total utility Y(x) subject to constraint
conditions.
Take a proper form of the equation (C.1) for maximization formulation as follows:

Y(x)= > wJi(x), subject to > w;=1 and 0 < wy,wg < 1. (C.2)

i=L,R i=L,R

Here w; and wg stand for the weights of the objective functions. And we choose weights and guarantee
that their sum is equal to one.
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