In this work, we develop a mathematical model to describe the local movement of individuals by taking into account their return to home after a period of travel. We provide a suitable functional framework to handle this system and study the large-time behavior of the solutions. We extend our model by incorporating a colonization process and applying the return to home process to an epidemic.
Citation: Arnaud Ducrot, Pierre Magal. Return-to-home model for short-range human travel[J]. Mathematical Biosciences and Engineering, 2022, 19(8): 7737-7755. doi: 10.3934/mbe.2022363
In this work, we develop a mathematical model to describe the local movement of individuals by taking into account their return to home after a period of travel. We provide a suitable functional framework to handle this system and study the large-time behavior of the solutions. We extend our model by incorporating a colonization process and applying the return to home process to an epidemic.
[1] | S. Ruan, Spatial-temporal dynamics in nonlocal epidemiological models, in Mathematics for Life Science and Medicine, (eds Y. Takeuchi, K. Sato and Y. Iwasa), Springer-Verlag, (2007), 97–122. https://doi.org/10.1007/978-3-540-34426-1_5 |
[2] | S. Ruan, Spatiotemporal epidemic models for rabies among animals, Infect. Dis. Modell., 2 (2017), 277–287. https://doi.org/10.1016/j.idm.2017.06.001 doi: 10.1016/j.idm.2017.06.001 |
[3] | R. S. Cantrell, C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons, 2004. https://doi.org/10.1002/0470871296 |
[4] | R. S. Cantrell, C. Cosner, S. Ruan, Spatial Ecology, CRC Press, 2010. https://doi.org/10.1201/9781420059861 |
[5] | J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, Springer, Cham, 2001. https://doi.org/10.1007/b98869 |
[6] | B. Perthame, Parabolic equations in biology, in Parabolic Equations in Biology, Springer, Cham, (2015), 1–21. https://doi.org/10.1007/978-3-319-19500-1_1 |
[7] | L. Roques, Modèles de réaction-diffusion pour l'écologie spatiale, Editions Quae, 2013. |
[8] | R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugen., 7 (1937), 355–369. https://doi.org/10.1111/j.1469-1809.1937.tb02153.x doi: 10.1111/j.1469-1809.1937.tb02153.x |
[9] | A. N. Kolmogorov, I. G. Petrovski, N. S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. Moskow, Ser. Internat., 1 (1937), 1–25. |
[10] | P. Magal, G. F. Webb, Y. Wu, An environmental model of honey bee colony collapse due to pesticide contamination, Bull. Math. Biol., 81 (2019), 4908–4931. https://doi.org/10.1007/s11538-019-00662-5 doi: 10.1007/s11538-019-00662-5 |
[11] | P. Magal, G. F. Webb, Y. Wu, A spatial model of honey bee colony collapse due to pesticide contamination of foraging bees, J. Math. Biol., 80 (2020), 2363–2393. https://doi.org/10.1007/s00285-020-01498-7 doi: 10.1007/s00285-020-01498-7 |
[12] | D. Brockmann, L. Hufnagel, T. Geisel, The scaling laws of human travel, Nature, 439 (2006), 462–465. https://doi.org/10.1038/nature04292 doi: 10.1038/nature04292 |
[13] | M. C. Gonzalez, C. A. Hidalgo, A. L. Barabasi, Understanding individual human mobility patterns, Nature, 453 (2008), 779–782. https://doi.org/10.1038/nature06958 doi: 10.1038/nature06958 |
[14] | J. Klafter, M. F. Shlesinger, G. Zumofen, Beyond brownian motion, Phys. Today, 49 (1996), 33–39. https://doi.org/10.1063/1.881487 doi: 10.1063/1.881487 |
[15] | R. N. Mantegna, H. E. Stanley, Stochastic process with ultraslow convergence to a Gaussian: The truncated Lévy flight, Phys. Rev. Lett., 73 (1994), 2946. https://doi.org/10.1103/PhysRevLett.73.2946 doi: 10.1103/PhysRevLett.73.2946 |
[16] | C. Cosner, J. C. Beier, R. S. Cantrell, D.Impoinvil, L. Kapitanski, M. D. Potts, S. Ruan, The effects of human movement on the persistence of vector-borne diseases, J. Theor. Biol., 258 (2009), 550–560. https://doi.org/10.1016/j.jtbi.2009.02.016 doi: 10.1016/j.jtbi.2009.02.016 |
[17] | United States Census Bureau. Available from: https://www.census.gov/data/datasets/timeseries/demo/popest/2010s-counties-total.html#par_textimage_70769902. |
[18] | M. Haase, The functional calculus for sectorial operators, in The Functional Calculus for Sectorial Operators, Birkhäuser Basel, 169 (2006), 19–60. https://doi.org/10.1007/3-7643-7698-8_2 |
[19] | P. Magal, S. Ruan, On semilinear Cauchy problems with non-dense domain, Adv. Differ. Equations, 14 (2009), 1041–1084. https://doi.org/10.1007/978-3-030-01506-0_5 doi: 10.1007/978-3-030-01506-0_5 |
[20] | P. Magal, S. Ruan, Theory and Applications of Abstract Semilinear Cauchy Problems, Springer International Publishing, 2018. https://doi.org/10.1007/978-3-030-01506-0 |
[21] | H. L. Smith, Monotone Dynamical Systems: An Introduction to The Theory of Competitive and Cooperative Systems, American Mathematical Society, 2008. https://doi.org/http://dx.doi.org/10.1090/surv/041 |
[22] | H. L. Smith, Monotone dynamical systems: reflections on new advances & applications, Discrete Contin. Dyn. Syst. A, 37 (2017), 485. http://dx.doi.org/10.3934/dcds.2017020 doi: 10.3934/dcds.2017020 |
[23] | P. Magal, O. Seydi, F. B. Wang, Monotone abstract non-densely defined Cauchy problems applied to age structured population dynamic models, J. Math. Anal. Appl., 479 (2019), 450–481. https://doi.org/10.1016/j.jmaa.2019.06.034 doi: 10.1016/j.jmaa.2019.06.034 |
[24] | J. Coville, L. Dupaigne, On a non-local equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 727–755. https://doi.org/10.1017/S0308210504000721 doi: 10.1017/S0308210504000721 |
[25] | D. Gao, How does dispersal affect the infection size?, SIAM J. Appl. Math., 80 (202), 2144–2169. https://doi.org/10.1137/19M130652X doi: 10.1137/19M130652X |
[26] | F. Lutscher, E. Pachepsky, M. Lewis, The effect of dispersal patterns on stream populations, SIAM J. Appl. Math., 65 (2005), 1305–1327. https://doi.org/10.1137/S0036139904440400 doi: 10.1137/S0036139904440400 |