Research article Special Issues

$ k $-domination and total $ k $-domination numbers in catacondensed hexagonal systems


  • Received: 17 March 2022 Revised: 26 April 2022 Accepted: 29 April 2022 Published: 13 May 2022
  • In this paper we study the $ k $-domination and total $ k $-domination numbers of catacondensed hexagonal systems. More precisely, we give the value of the total domination number, we find upper and lower bounds for the $ 2 $-domination number and the total $ 2 $-domination number, characterizing the catacondensed hexagonal systems which attain these bounds, and we give the value of the $ 3 $-domination number for any catacondensed hexagonal system with a given number of hexagons. These results complete the study of $ k $-domination and total $ k $-domination of catacondensed hexagonal systems for all possible values of $ k $.

    Citation: Sergio Bermudo, Robinson A. Higuita, Juan Rada. $ k $-domination and total $ k $-domination numbers in catacondensed hexagonal systems[J]. Mathematical Biosciences and Engineering, 2022, 19(7): 7138-7155. doi: 10.3934/mbe.2022337

    Related Papers:

  • In this paper we study the $ k $-domination and total $ k $-domination numbers of catacondensed hexagonal systems. More precisely, we give the value of the total domination number, we find upper and lower bounds for the $ 2 $-domination number and the total $ 2 $-domination number, characterizing the catacondensed hexagonal systems which attain these bounds, and we give the value of the $ 3 $-domination number for any catacondensed hexagonal system with a given number of hexagons. These results complete the study of $ k $-domination and total $ k $-domination of catacondensed hexagonal systems for all possible values of $ k $.



    加载中


    [1] J. F. Fink, M. S. Jacobson, $n$-domination in graphs, in Graph Theory with Applications to Algorithms and Computer Science, Wiley, (1985), 127–147.
    [2] Y. Caro, On the k-domination and k-transversal numbers of graphs and hypergraphs, Ars Comb., 29 (1990), 49–55.
    [3] Y. Caro, Y. Roditty, A note on the $k$-domination number of a graph, Int. J. Math. Math. Sci., 13 (1990), 205–206. https://doi.org/10.1155/S016117129000031X doi: 10.1155/S016117129000031X
    [4] M. Chellali, O. Favaron, A. Hansberg, L. Volkmann, $k$-domination and $k$-independence in graphs: A survey, Graphs Comb., 28 (2012), 1–55. https://DOI 10.1007/s00373-011-1040-3 doi: 10.1007/s00373-011-1040-3
    [5] G. B. Ekinci, C. Bujtás, Bipartite graphs with close domination and $k$-domination numbers, Open Math., 18 (2020), 873–885. https://doi.org/10.1515/math-2020-0047 doi: 10.1515/math-2020-0047
    [6] O. Favaron, $k$-domination and $k$-independence in graphs, Ars Comb., 25 (1988), 159–167.
    [7] O. Favaron, A. Hansberg, L. Volkmann, On $k$-domination and minimum degree in graphs, J. Graph Theory, 57 (2008), 33–40. https://doi.org/10.1002/jgt.20279 doi: 10.1002/jgt.20279
    [8] A. Hansberg, R. Pepper, On $k$-domination and $j$-independence in graphs, Discrete Appl. Math., 161 (2013), 1472–1480. https://doi:10.1016/j.dam.2013.02.008 doi: 10.1016/j.dam.2013.02.008
    [9] A. Hansberg, On the $k$-domination number, the domination number and the cycle of length four, Utilitas Math., 98 (2015), 65–76.
    [10] S. Bermudo, J. C. Hernández-Gómez, J. M. Sigarreta, On the total k-domination in graphs, Discuss. Math. Graph Theory, 38 (2018), 301–317. https://doi:10.7151/dmgt.2016 doi: 10.7151/dmgt.2016
    [11] S. Bermudo, J. L. Sánchez, J. M. Sigarreta, Total $k$-domination in Cartesian product graphs, Period. Math. Hung., 75 (2017), 255–267. https://DOI 10.1007/s10998-017-0191-2 doi: 10.1007/s10998-017-0191-2
    [12] H. Fernau, J. A. Rodríguez-Velázquez, J. M. Sigarreta, Global powerful $r$-alliances and total $k$-domination in graphs, Util. Math., 98 (2015), 127–147.
    [13] V. R. Kulli, On $n$-total domination number in graphs, in Graph Theory, Combinatorics, Algorithms and Applications, SIAM, Philadelphia, USA, (1991), 319–324.
    [14] T. W. Haynes, S. Hedetniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
    [15] T. W. Haynes, S. Hedetniemi, P. J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, Inc., New York, 1998.
    [16] A. Cabrera-Martínez, New bounds on the double domination number of trees, Discrete Appl. Math., 315 (2022), 97–103. https://doi.org/10.1016/j.dam.2022.03.022 doi: 10.1016/j.dam.2022.03.022
    [17] M. Hajian, M. A. Henning, N. Jafari Rad, A classification of cactus graphs according to their domination number, Discuss. Math. Graph Theory, 42 (2022), 613–626. https://doi.org/10.7151/dmgt.2295 doi: 10.7151/dmgt.2295
    [18] M. A. Henning, P. Kaemawichanurat, Connected domination critical graphs with a block having maximum number of cut vertices, Appl. Math. Comput., 406 (2021), 126248. https://doi.org/10.1016/j.amc.2021.126248 doi: 10.1016/j.amc.2021.126248
    [19] M. A. Henning, A. Yeo, A new upper bound on the total domination number in graphs with minimum degree six, Discrete Appl. Math., 302 (2021), 1–7. https://doi.org/10.1016/j.dam.2021.05.033 doi: 10.1016/j.dam.2021.05.033
    [20] I. Gutman, S. J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons, Springer, Berlin, 1989.
    [21] S. Ding, M. I. Qureshi, S. F. Shah, A. Fahad, M. K. Jamil, J. B. Liu, Face index of nanotubes and regular hexagonal lattices, Int. J. Quantum Chem., 121 (2021), e26761. https://doi.org/10.1002/qua.26761 doi: 10.1002/qua.26761
    [22] J. B. Liu, Y. Bao, W. T. Zheng, Network coherence analysis on a family of nested weighted n-polygon networks, Fractals, 29 (2021), 2150260–2150276. https://doi.org/10.1142/S0218348X21502601 doi: 10.1142/S0218348X21502601
    [23] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
    [24] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, 2009.
    [25] T. Haynes, D. Kinsley, E. Seier, Y. Zou, A quantitative analysis of secondary RNA structure using domination based parameters on trees, BMC Bioinf., 7 (2006), 108. https://doi.org/10.1186/1471-2105-7-108 doi: 10.1186/1471-2105-7-108
    [26] S. Bermudo, R. A. Higuita, J. Rada, Domination in hexagonal chains, Appl. Math. Comput., 369 (2020), 124817. https://doi.org/10.1016/j.amc.2019.124817 doi: 10.1016/j.amc.2019.124817
    [27] S. Bermudo, R. A. Higuita, J. Rada, Domination number of catacondensed hexagonal systems, J. Math. Chem., 59 (2021), 1348–1367. https://doi.org/10.1007/s10910-021-01243-5 doi: 10.1007/s10910-021-01243-5
    [28] L. Hutchinson, V. Kamat, C. E. Larson, S. Mehta, D. Muncy, N. Van Cleemput, Automated conjecturing VI : domination number of benzenoids, Match-Commun. Math. Comput. Chem., 80 (2018), 821–834.
    [29] T. Iqbal, M. Imran, S. A. U. H. Bokhary, Domination and power domination in certain families of nanostars dendrimers, IEEE Access, 8 (2020), 130947–130951.
    [30] S. Majstorović, A. Klobučar, Upper bound for total domination number on linear and double hexagonal chains, Int. J. Chem. Mod., 3 (2010), 139–145.
    [31] J. Quadras, A. S. Merlin Mahizl. I. Rajasingh, R. S. Rajan, Domination in certain chemical graphs, J. Math. Chem., 53 (2015), 207–219. https://doi.org/10.1007/s10910-014-0422-1 doi: 10.1007/s10910-014-0422-1
    [32] D. Vukičević, A. Klobučar, $K$-Dominating sets on linear benzenoids and on the infinite hexagonal grid, Croat. Chem. Acta, 80 (2007), 187–191.
    [33] N. Almalki, P. Kaemawichanurat, Domination and independent domination in hexagonal systems, Mathematics, 10 (2022). https://doi.org/10.3390/math10010067
    [34] Y. Gao, E. Zhu, Z. Shao, I. Gutman, A. Klobučar, Total domination and open packing in some chemical graphs, J. Math. Chem., 56 (2018), 1481–1492. https://doi.org/10.1007/s10910-018-0877-6 doi: 10.1007/s10910-018-0877-6
    [35] A. Klobučar, A. Klobučar, Total and double total domination number on hexagonal grid, Mathematics, 7 (2019), 1110. https://doi.org/10.3390/math7111110 doi: 10.3390/math7111110
    [36] S. Majstorović, T. Došlić, A. Klobučar, $K$-Domination on hexagonal cactus chains, Kragujevac J. Math., 36 (2012), 335–347.
    [37] S. Majstorović, A. Klobučar, T. Došlić, Domination numbers of m-cactus chains, Ars Comb., 125 (2016), 11–22.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1508) PDF downloads(79) Cited by(3)

Article outline

Figures and Tables

Figures(18)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog