Research article

Threshold dynamics of a viral infection model with defectively infected cells

  • Received: 08 March 2022 Revised: 08 April 2022 Accepted: 19 April 2022 Published: 25 April 2022
  • In this paper, we investigate the global dynamics of a viral infection model with defectively infected cells. The explicit expression of the basic reproduction number of virus is obtained by using the next generation matrix approach, where each term has a clear biological interpretation. We show that the basic reproduction number serves as a threshold parameter. The virus dies out if the basic reproduction number is not greater than unity, otherwise the virus persists and the viral load eventually approaches a positive number. The result is established by Lyapunov's direct method. Our novel arguments for the stability of the infection equilibrium not only simplify the analysis (compared with some traditional ones in the literature) but also demonstrate some correlation between the two Lyapunov functions for the infection-free and infection equilibria.

    Citation: Jianquan Li, Xiaoyu Huo, Yuming Chen. Threshold dynamics of a viral infection model with defectively infected cells[J]. Mathematical Biosciences and Engineering, 2022, 19(7): 6489-6503. doi: 10.3934/mbe.2022305

    Related Papers:

  • In this paper, we investigate the global dynamics of a viral infection model with defectively infected cells. The explicit expression of the basic reproduction number of virus is obtained by using the next generation matrix approach, where each term has a clear biological interpretation. We show that the basic reproduction number serves as a threshold parameter. The virus dies out if the basic reproduction number is not greater than unity, otherwise the virus persists and the viral load eventually approaches a positive number. The result is established by Lyapunov's direct method. Our novel arguments for the stability of the infection equilibrium not only simplify the analysis (compared with some traditional ones in the literature) but also demonstrate some correlation between the two Lyapunov functions for the infection-free and infection equilibria.



    加载中


    [1] M. A. Nowak, S. Bonhoeffer, A. M. Hill, R. Boehme, H. C. Thomas, H. Mcdade, Viral dynamics in hepatitis B virus infection, Proc. Nati. Acad. Sci., 93 (1996), 4398–4402. https://doi.org/10.0000/PMID8633078 doi: 10.0000/PMID8633078
    [2] M. A. Nowak, R. M. Charles, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74–74. https://doi.org/10.1126/science.272.5258.74 doi: 10.1126/science.272.5258.74
    [3] S. Bonhoeffer, R. M. May, G. M. Shaw, M. A. Nowak, Virus dynamics and drug therapy, Proc. Natl. Acad. Sci., 94 (1997), 6971–6976. https://doi.org/10.1073/pnas.94.13.6971 doi: 10.1073/pnas.94.13.6971
    [4] S. Pankavich, The effects of latent infection on the dynamics of HIV, Differ. Equ. Dyn. Syst., 24 (2016), 281–303. https://doi.org/10.1007/s12591-014-0234-6 doi: 10.1007/s12591-014-0234-6
    [5] B. Buonomo, C. Vargas-De-León, Global stability for an HIV-1 infection model including an eclipse stage of infected cells, J. Math. Anal. Appl., 385 (2012), 709–720. https://doi.org/10.1016/j.jmaa.2011.07.006 doi: 10.1016/j.jmaa.2011.07.006
    [6] A. M. Elaiw, N. H. Alshamrani, Analysis of a within-host HIV/HTLV-I co-infection model with immunity, Virus Res., 295 (2020), 198204. https://doi.org/10.1016/j.virusres.2020.198204 doi: 10.1016/j.virusres.2020.198204
    [7] J. Lang, M. Li, Stable and transient periodic oscillations in a mathematical model for CTL response to HTLV-I infection, J. Math. Biol., 65 (2012), 181–199. https://doi.org/10.1007/s00285-011-0455-z doi: 10.1007/s00285-011-0455-z
    [8] M. Li, H. Shu, Multiple stable periodic oscillations in a mathematical model of CTL response to HTLV-I infection, Bull. Math. Biol., 73 (2011), 1774–1793. https://doi.org/10.1007/s11538-010-9591-7 doi: 10.1007/s11538-010-9591-7
    [9] A. M. Elaiw, A. M. Althiabi, M. A. Alghamdi, N. Bellomo, Dynamical behavior of a general HIV-1 infection model with HAART and cellular reservoirs, J. Comput. Anal. Appl., 24 (2018), 728–743.
    [10] A. M. Elaiw, E. K. Elnahary, A. A. Raezah, Effect of cellular reservoirs and delays on the global dynamics of HIV, Adv. Differ. Equ., 2018 (2018), 85–121. https://doi.org/10.1186/s13662-018-1523-0 doi: 10.1186/s13662-018-1523-0
    [11] M. Giovanetti, E. Cella, F. Benedetti, B. R. Magalis, V. Fonseca, S. Fabris, et al., SARS-CoV-2 shifting transmission dynamics and hidden reservoirs potentially limit efficacy of public health interventions in Italy, Commun. Biol., 4 (2021), 489–511. https://doi.org/10.1038/s42003-021-02025-0 doi: 10.1038/s42003-021-02025-0
    [12] A. M. Elaiw, T. O. Alade, S. M. Alsulami, Analysis of latent CHIKV dynamics models with general incidence rate and time delays, J. Biol. Dyn., 12 (2018), 700–730. https://doi.org/10.1080/17513758.2018.1503349 doi: 10.1080/17513758.2018.1503349
    [13] A. M. Elaiw, N. H. Alshamrani, Modeling and stability analysis of HIV/HTLV-I co-infection, Int. J. Biomath., 14 (2021), 2150030. https://doi.org/10.1142/S1793524521500303 doi: 10.1142/S1793524521500303
    [14] J. M. Mutua, F. B. Wang, N. K. Vaidya, Effects of periodic intake of drugs of abuse (morphine) on HIV dynamics: Mathematical model and analysis, Math. Biosci., 326 (2020), 108395. https://doi.org/10.1016/j.mbs.2020.108395 doi: 10.1016/j.mbs.2020.108395
    [15] E. Genoyer, C. B. López, The impact of defective viruses on infection and immunity, Annu. Rev. Virol., 6 (2019), 547–566. https://doi.org/10.1146/annurev-virology-092818-015652 doi: 10.1146/annurev-virology-092818-015652
    [16] S. B. Halstead, E. J. O'Rourke, A. C. Allison, Dengue viruses and mononuclear phagocytes. II. Identity of blood and tissue leukocytes supporting in vitro infection, J. Exp. Med., 146 (1977), 218–229. https://doi.org/10.1084/jem.146.1.218 doi: 10.1084/jem.146.1.218
    [17] M. A. Nowak, R. M. May, Virus Dynamics, Oxford University Press, New York, 2000.
    [18] D. S. Callaway, A. S. Perelson, HIV-1 infection and low steady state viral loads, Bull. Math. Biol., 64 (2002), 29–64. https://doi.org/10.1006/bulm.2001.0266 doi: 10.1006/bulm.2001.0266
    [19] A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879–883. https://doi.org/10.1016/j.bulm.2004.02.001 doi: 10.1016/j.bulm.2004.02.001
    [20] A. M. Elaiw, Global threshold dynamics in humoral immunity viral infection models including an eclipse stage of infected cells, J. KSIAM, 19 (2015), 137–170. https://doi.org/10.12941/jksiam.2015.19.137 doi: 10.12941/jksiam.2015.19.137
    [21] A. Korobeinikov, Global asymptotic properties of virus dynamics models with dose-dependent parasite reproduction and virulence and non-linear incidence rate, Math. Med. Biol., 26 (2009), 225–239. https://doi.org/10.1093/imammb/dqp006 doi: 10.1093/imammb/dqp006
    [22] A. M. Elaiw, S. A. Azoz, Global properties of a class of HIV infection models with Beddington-DeAngelis functional response, Math. Meth. Appl. Sci., 36 (2013), 383–394. https://doi.org/10.1002/mma.2596 doi: 10.1002/mma.2596
    [23] S. Bates, H. Hutson, J. Rebaza, Global stability of Zika virus dynamics, Differ. Equ. Dyn. Syst., 29 (2021), 657–672. https://doi.org/10.1007/s12591-017-0396-0 doi: 10.1007/s12591-017-0396-0
    [24] Y. Cai, K. Wang, W. Wang, Global transmission dynamics of a Zika virus model, Appl. Math. Lett., 92 (2019), 190–195. https://doi.org/10.1016/j.aml.2019.01.015 doi: 10.1016/j.aml.2019.01.015
    [25] S. Wang, D. Zou, Global stability of in-host viral models with humoral immunity and intracellular delays, Appl. Math. Model., 36 (2012), 1313–1322. https://doi.org/10.1016/j.apm.2011.07.086 doi: 10.1016/j.apm.2011.07.086
    [26] X.Wang, X. Song, Global properties of a model of immune effector responses to viral infections, Adv. Complex Syst., 10 (2007), 495–503. https://doi.org/10.1142/S0219525907001252 doi: 10.1142/S0219525907001252
    [27] J. P. LaSalle, The Stability of Dynamical Systems, In: Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976. https://doi.org/10.1137/1.9781611970432
    [28] J. Li, X. Xie, Y. Chen, A new way of constructing Lyapunov functions with application to an SI epidemic model, Appl. Math. Lett., 113 (2021), 106777. https://doi.org/10.1016/j.aml.2020.106777 doi: 10.1016/j.aml.2020.106777
    [29] Y. Chen, J. Li, S. Zou, Global dynamics of an epidemic model with relapse and nonlinear incidence, Math. Meth. Appl. Sci., 42 (2019), 1283–1291. https://doi.org/10.1002/mma.5439 doi: 10.1002/mma.5439
    [30] H. Guo, M. Li, Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions, Proc. Amer. Math. Soc., 136 (2008), 2793–2802. https://doi.org/10.1090/S0002-9939-08-09341-6 doi: 10.1090/S0002-9939-08-09341-6
    [31] J. Li, Y. Xiao, F. Zhang, Y. Yang, An algebraic approach to proving the global stability of a class of epidemic models, Nonlinear Anal. RWA, 13 (2012), 2006–2016. https://doi.org/10.1016/j.nonrwa.2011.12.022 doi: 10.1016/j.nonrwa.2011.12.022
    [32] C. Mccluskey, Lyapunov functions for disease models with immigration of infected hosts, Discrete Contin. Dyn. Syst. Ser. B, 22 (2021), 4479–4491. https://doi.org/10.3934/dcdsb.2020296 doi: 10.3934/dcdsb.2020296
    [33] A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission, Bull. Math. Biol., 68 (2006), 615–626. https://doi.org/10.1007/s11538-005-9037-9 doi: 10.1007/s11538-005-9037-9
    [34] J. Li, Y. Yang, J. Wu, X. Song, Global stability of vaccine-age/staged-structured epidemic models with nonlinear incidence, Electron. J. Qual. Theory Differ. Equ., 18 (2016), 1–17. https://doi.org/10.14232/ejqtde.2016.1.18 doi: 10.14232/ejqtde.2016.1.18
    [35] S. Ottaviano, M. Sensi, S. Sottile, Global stability of SAIRS epidemic models, Nonlinear Anal. RWA, 65 (2022), 103501. https://doi.org/10.1016/j.nonrwa.2021.103501 doi: 10.1016/j.nonrwa.2021.103501
    [36] S. Ottaviano, M. Sensi, S. Sottile, Global stability of multi-group SAIRS epidemic models, preprint, preprint, arXiv: 2202.02993.
    [37] Z. Shuai, P. van den Driessche, Global stability of infectious disease models using Lyapunov functions, SIAM J. Appl. Math., 73 (2013), 1513–1532. https://doi.org/10.1137/120876642 doi: 10.1137/120876642
    [38] A. A. Lashari, G. Zaman, Global dynamics of vector-borne diseases with horizontal transmission in host population, Comput. Math. Appl., 61 (2011), 745–754. https://doi.org/10.1016/j.camwa.2010.12.018 doi: 10.1016/j.camwa.2010.12.018
    [39] S. S. Nadim, I. Ghosh, J. Chattopadhyay, Global dynamics of a vector-borne disease model with two transmission routes, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 30 (2020), 2050083, 23 pp. https://doi.org/10.1142/S0218127420500832 doi: 10.1142/S0218127420500832
    [40] M. Ozair, Q. Din, T. Hussain, A. Z. Awan, Qualitative behavior of vector-borne disease model, J. Nonlinear Sci. Appl., 9 (2016), 1382–1395. http://dx.doi.org/10.22436/jnsa.009.03.62 doi: 10.22436/jnsa.009.03.62
    [41] C. Palmer, E. Landguth, E. Stone, T. Johnson, The dynamics of vector-borne relapsing diseases, Math. Biosci., 297 (2018), 32–42. https://doi.org/10.1016/j.mbs.2018.01.001 doi: 10.1016/j.mbs.2018.01.001
    [42] A. Traoré, Analysis of a vector-borne disease model with human and vectors immigration, J. Appl. Math. Comput., 64 (2020), 411–428. https://doi.org/10.1007/s12190-020-01361-4 doi: 10.1007/s12190-020-01361-4
    [43] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [44] F. F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Springer-Verlag, Berlin, Heidelberg, 1996. https://doi.org/10.1007/978-3-642-61453-8
    [45] J. Li, Y. Yang, Y. Zhou, Global stability of an epidemic model with latent stage and vaccination, Nonlinear Anal. RWA, 12 (2011), 2163–2173. https://doi.org/10.1016/j.nonrwa.2010.12.030 doi: 10.1016/j.nonrwa.2010.12.030
    [46] H. Guo, M. Y. Li, Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models, Can. Appl. Math. Q., 14 (2006), 259–284.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1677) PDF downloads(121) Cited by(2)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog