Research article Special Issues

What can we learn from COVID-19 data by using epidemic models with unidentified infectious cases?


  • Received: 22 September 2021 Accepted: 05 November 2021 Published: 17 November 2021
  • The COVID-19 outbreak, which started in late December 2019 and rapidly spread around the world, has been accompanied by an unprecedented release of data on reported cases. Our objective is to offer a fresh look at these data by coupling a phenomenological description to the epidemiological dynamics. We use a phenomenological model to describe and regularize the reported cases data. This phenomenological model is combined with an epidemic model having a time-dependent transmission rate. The time-dependent rate of transmission involves changes in social interactions between people as well as changes in host-pathogen interactions. Our method is applied to cumulative data of reported cases for eight different geographic areas. In the eight geographic areas considered, successive epidemic waves are matched with a phenomenological model and are connected to each other. We find a single epidemic model that coincides with the best fit to the data of the phenomenological model. By reconstructing the transmission rate from the data, we can understand the contributions of the changes in social interactions (contacts between individuals) on the one hand and the contributions of the epidemiological dynamics on the other hand. Our study provides a new method to compute the instantaneous reproduction number that turns out to stay below $ 3.5 $ from the early beginning of the epidemic. We deduce from the comparison of several instantaneous reproduction numbers that the social effects are the most important factor in understanding the epidemic wave dynamics for COVID-19. The instantaneous reproduction number stays below $ 3.5 $, which implies that it is sufficient to vaccinate $ 71\% $ of the population in each state or country considered in our study. Therefore, assuming the vaccines will remain efficient against the new variants and adjusting for higher confidence, it is sufficient to vaccinate $ 75-80\% $ to eliminate COVID-19 in each state or country.

    Citation: Quentin Griette, Jacques Demongeot, Pierre Magal. What can we learn from COVID-19 data by using epidemic models with unidentified infectious cases?[J]. Mathematical Biosciences and Engineering, 2022, 19(1): 537-594. doi: 10.3934/mbe.2022025

    Related Papers:

  • The COVID-19 outbreak, which started in late December 2019 and rapidly spread around the world, has been accompanied by an unprecedented release of data on reported cases. Our objective is to offer a fresh look at these data by coupling a phenomenological description to the epidemiological dynamics. We use a phenomenological model to describe and regularize the reported cases data. This phenomenological model is combined with an epidemic model having a time-dependent transmission rate. The time-dependent rate of transmission involves changes in social interactions between people as well as changes in host-pathogen interactions. Our method is applied to cumulative data of reported cases for eight different geographic areas. In the eight geographic areas considered, successive epidemic waves are matched with a phenomenological model and are connected to each other. We find a single epidemic model that coincides with the best fit to the data of the phenomenological model. By reconstructing the transmission rate from the data, we can understand the contributions of the changes in social interactions (contacts between individuals) on the one hand and the contributions of the epidemiological dynamics on the other hand. Our study provides a new method to compute the instantaneous reproduction number that turns out to stay below $ 3.5 $ from the early beginning of the epidemic. We deduce from the comparison of several instantaneous reproduction numbers that the social effects are the most important factor in understanding the epidemic wave dynamics for COVID-19. The instantaneous reproduction number stays below $ 3.5 $, which implies that it is sufficient to vaccinate $ 71\% $ of the population in each state or country considered in our study. Therefore, assuming the vaccines will remain efficient against the new variants and adjusting for higher confidence, it is sufficient to vaccinate $ 75-80\% $ to eliminate COVID-19 in each state or country.



    加载中


    [1] WHO, Disease Outbreak News. Pneumonia of unknown cause–China, January 5, 2020. Available from: https://www.who.int/emergencies/disease-outbreak-news/item/2020-DON229 (Accessed on 30 Jun 2021).
    [2] WHO, Disease Outbreak News. Novel coronavirus–China, January 12, 2020. Available from: https://www.who.int/emergencies/disease-outbreak-news/item/2020-DON233 (Accessed on 30 Jun 2021).
    [3] M. L. Holshue, C. DeBolt, S. Lindquist, K. H. Lofy, J. Wiesman, H. Bruce, et al, First case of 2019 novel Coronavirus in the United States, New Engl. J. Med., 382 (2020), 929–936. doi: 10.1056/NEJMoa2001191. doi: 10.1056/NEJMoa2001191
    [4] Data from WHO. Available from: https://covid19.who.int/WHO-COVID-19-global-data.csv (Accessed on 30 Jun 2021).
    [5] E. Anzolin, A. Amante, First Italian dies of coronavirus as outbreak flares in north, Reuters, 2020.
    [6] E. Dong, H. Du, L. Gardner, An interactive web-based dashboard to track COVID-19 in real time, Lancet Infect. Dis., 20 (2020), 533–534. doi: 10.1007/s00285-021-01630-1. doi: 10.1007/s00285-021-01630-1
    [7] Z. Liu, P. Magal, O. Seydi, G. F. Webb, Understanding unreported cases in the COVID-19 epidemic outbreak in Wuhan, China, and the importance of major public health interventions, Biology, 9 (2020), 50. doi: 10.3390/biology9030050. doi: 10.3390/biology9030050
    [8] A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, et al., Early dynamics of transmission and control of COVID-19: a mathematical modelling study, Lancet Infect. Dis., 20 (2020), 553–558. doi: 10.1016/S1473-3099(20)30144-4. doi: 10.1016/S1473-3099(20)30144-4
    [9] G. T. Patrick, C. W. Walker, W. Oliver, The global impact of COVID-19 and strategies for mitigation and suppression, Imperial Rep., 2020.
    [10] C. Rothe, M. Schunk, P. Sothmann, G. Bretzel, G. Froeschl, C. Wallrauch, et al., Transmission of 2019-nCoV infection from an asymptomatic contact in Germany, New Engl. J. Med., 382 (2020), 970–971. doi : 10.1056/NEJMc2001468. doi: 10.1056/NEJMc2001468
    [11] K. Mizumoto, K. Kagaya, A. Zarebski, G. Chowell, Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020, Eurosurveillance, 25 (2020), 2000180. doi: 10.2807/1560-7917.ES.2020.25.10.2000180. doi: 10.2807/1560-7917.ES.2020.25.10.2000180
    [12] O. Bylicki, N. Paleiron, F. Janvier, An Outbreak of Covid-19 on an Aircraft Carrier, New Engl. J. Med., 384 (2021), 976–977. doi: 10.1056/NEJMoa2019375. doi: 10.1056/NEJMoa2019375
    [13] J. Qiu, Covert coronavirus infections could be seeding new outbreaks, Nature (Lond.), 2020. doi: 10.1038/d41586-020-00822-x.
    [14] Z. Liu, P. Magal, O. Seydi, G. F. Webb, Predicting the cumulative number of cases for the COVID-19 epidemic in China from early data, Math. Biosci. Eng., 17 (2020), 3040–3051. doi: 10.3934/mbe.2020172. doi: 10.3934/mbe.2020172
    [15] Z. Liu, P. Magal, O. Seydi, G. F. Webb, A COVID-19 epidemic model with latency period, Infect. Dis. Model., 5 (2020), 323–337. doi: 10.1016/j.idm.2020.03.003. doi: 10.1016/j.idm.2020.03.003
    [16] Z. Liu, P. Magal, O. Seydi, G. F. Webb, A model to predict COVID-19 epidemics with applications to South Korea, Italy, and Spain, SIAM News, 53 (2020).
    [17] H. Nishiura, T. Kobayashi, Y. Yang, K. Hayashi, T. Miyama, R. Kinoshita, et al., The rate of underascertainment of novel coronavirus (2019-nCoV) infection: estimation using Japanese passengers data on evacuation flights, J. Clin. Med., 2020. doi: 10.3390/jcm9020419. doi: 10.3390/jcm9020419
    [18] R. Omori, K. Mizumoto, H. Nishiura, Ascertainment rate of novel coronavirus disease (COVID-19) in Japan, Int. J. Infect. Dis., 96 (2020), 673–675. doi: 10.1016/j.ijid.2020.04.080. doi: 10.1016/j.ijid.2020.04.080
    [19] Y. M. Bar-On, A. Flamholz, R. Phillips, R. Milo, Science Forum: SARS-CoV-2 (COVID-19) by the numbers, eLife, 9 (2020), e57309. doi: 10.7554/eLife.57309. doi: 10.7554/eLife.57309
    [20] Z. Liu, P. Magal, G. F. Webb, Predicting the number of reported and unreported cases for the COVID-19 epidemics in China, South Korea, Italy, France, Germany and United Kingdom, J. Theor. Biol., 509 (2021), 110501. doi: 10.1016/j.jtbi.2020.110501. doi: 10.1016/j.jtbi.2020.110501
    [21] Q. Griette, P. Magal, O. Seydi, Unreported cases for age dependent COVID-19 outbreak in Japan, Biology, 9 (2020), 132. doi: 10.3390/biology9060132. doi: 10.3390/biology9060132
    [22] G. Zhou, G. Yan, Severe acute respiratory syndrome epidemic in Asia, Emerg. Infect. Dis., 9 (2003), 1608–1610. doi: 10.3201/eid0912.030382. doi: 10.3201/eid0912.030382
    [23] Y. Hsieh, G. Yan, H. Chang, J. Lee, SARS epidemiology modeling, Emerg. Infect. Dis., 10 (2004), 1165–1167. doi: 10.3201/eid1006.031023. doi: 10.3201/eid1006.031023
    [24] X. S. Wang, J. Wu, Y. Yang, Richards model revisited: validation by and application to infection dynamics, J. Theoret. Biol., 313 (20212), 12–19. doi: 10.1016/j.jtbi.2012.07.024. doi: 10.1016/j.jtbi.2012.07.024
    [25] Y. H. Hsieh, Richards model: a simple procedure for real-time prediction of outbreak severity, in Modeling and dynamics of infectious diseases, (2009), 216–236.
    [26] A. Attanayake, S. Perera, S. Jayasinghe, Phenomenological Modelling of COVID-19 Epidemics in Sri Lanka, Italy, the United States, and Hebei Province of China, Comp. Math. Meth. Med., (2020), 6397063. doi: 10.1155/2020/6397063. doi: 10.1155/2020/6397063
    [27] M. Castro, S. Ares, J. Cuesta, S. Manrubia, The turning point and end of an expanding epidemic cannot be precisely forecast, Proc. Natl. Acad. Sci., 117 (2020), 26190–26196. doi: 10.1073/pnas.2007868117. doi: 10.1073/pnas.2007868117
    [28] A. M. Ćmiel, B. Ćmiel, A simple method to describe the COVID-19 trajectory and dynamics in any country based on Johnson cumulative density function fitting, Sci. Rep., 11 (2021), 1–10. doi: 10.1038/s41598-021-97285-5. doi: 10.1038/s41598-021-97285-5
    [29] D. Faranda, I. Castillo, O. Hulme, A. Jezequel, J. S. W. Lamb, Y. Sato, et al, Asymptotic estimates of SARS-CoV-2 infection counts and their sensitivity to stochastic perturbation Chaos, 30 (2020), 051107. doi: 10.1063/5.0008834.
    [30] J. Mazurek, The evaluation of COVID-19 prediction precision with a Lyapunov-like exponent, Plos One, 16 (2021), e0252394. doi: 10.1371/journal.pone.0252394. doi: 10.1371/journal.pone.0252394
    [31] L. Palatella, F. Vanni, D. Lambert, A phenomenological estimate of the true scale of CoViD-19 from primary data, Chaos Solitons Fractals, 146 (2021), 110854. doi: 10.1016/j.chaos.2021.110854. doi: 10.1016/j.chaos.2021.110854
    [32] K. Roosa, Y. Lee, R. Luo, A. Kirpich, R. Rothenberg, J. M. Hyman, et al., Real-time forecasts of the COVID-19 epidemic in China from February 5th to February 24th, 2020, Infect. Dis. Model., 5 (2020), 256–263. doi: 10.1016/j.idm.2020.02.002. doi: 10.1016/j.idm.2020.02.002
    [33] R. Singh, M. Rani, A. Bhagavathula, R. Sah, A. Rodriguez-Morales, H. Kalita, et al., Prediction of the COVID-19 pandemic for the top 15 affected countries: advanced autoregressive integrated moving average (ARIMA) model, JMIR Publ. Health Surv., 6 (2020), e19115. doi: 10.2196/19115. doi: 10.2196/19115
    [34] P. Wang, X. Zheng, J. Li, B. Zhu, Prediction of epidemic trends in COVID-19 with logistic model and machine learning technics, Chaos Solitons Fractals, 139 (2020), 110058. doi: 10.1016/j.chaos.2020.110058. doi: 10.1016/j.chaos.2020.110058
    [35] Y. Zou, S. Pan, P. Zhao, L. Han, X. Wang, L. Hemerik, et al., Outbreak analysis with a logistic growth model shows COVID-19 suppression dynamics in China, PLoS One, 15 (2020), e0235247. doi: 10.1371/journal.pone.0235247. doi: 10.1371/journal.pone.0235247
    [36] J. Demongeot, Q. Griette, P. Magal, SI epidemic model applied to COVID-19 data in mainland China, R. Soc. Open Sci., 7 (2020), 201878. doi: 10.1098/rsos.201878. doi: 10.1098/rsos.201878
    [37] P. Magal, S. Ruan, Susceptible-infectious-recovered models revisited: from the individual level to the population level, Math. Biosci., 250 (2014), 26–40. doi: 10.1016/j.mbs.2014.02.001. doi: 10.1016/j.mbs.2014.02.001
    [38] J. Demongeot, Y. Flet-Berliac, H. Seligmann, Temperature decreases spread parameters of the new Covid-19 case dynamics, Biology, 9 (2020), 94. doi: 10.3390/biology9050094. doi: 10.3390/biology9050094
    [39] Y. Wang, B. Li, R. Gouripeddi, J. C. Facelli, Human activity pattern implications for modeling SARS-CoV-2 transmission, Comp. Meth. Prog. Biomed., 199 (2021), 105896. doi: 10.1016/j.cmpb.2020.105896. doi: 10.1016/j.cmpb.2020.105896
    [40] G. Chowell, P. Diaz-Dueñas, J. C. Miller, A. Alcazar-Velazco, J. M. Hyman, P. W. Fenimore, et al., Estimation of the reproduction number of dengue fever from spatial epidemic data, Math. Biosci., 208 (2007), 571–589. doi: 10.1016/j.mbs.2006.11.011. doi: 10.1016/j.mbs.2006.11.011
    [41] X. Huo, J. Chen, S. Ruan, Estimating asymptomatic, undetected and total cases for the COVID-19 outbreak in Wuhan: a mathematical modeling study, BMC Infect. Dis., 21 (2021), 1–18. doi: 10.1186/s12879-021-06078-8. doi: 10.1186/s12879-021-06078-8
    [42] G. Dimarco, B. Perthame, G. Toscani, M. Zanella, Kinetic models for epidemic dynamics with social heterogeneity, J. Math. Biol., 83 (2021), 1–32. doi: 10.1007/s00285-021-01630-1. doi: 10.1007/s00285-021-01630-1
    [43] W. P. London, J. A. Yorke, Recurrent outbreaks of measles, chickenpox and mumps: Ⅰ. Seasonal variation in contact rates, Am. J. Epidemiol., 98 (1973), 453–468. doi: 10.1093/oxfordjournals.aje.a121575. doi: 10.1093/oxfordjournals.aje.a121575
    [44] J. A. Yorke, W. P. London, Recurrent outbreaks of measles, chickenpox and mumps: Ⅱ. Systematic differences in contact rates and stochastic effects, Am. J. Epidemiol., 98 (1973), 469–482. doi: 10.1093/oxfordjournals.aje.a121576. doi: 10.1093/oxfordjournals.aje.a121576
    [45] A. Bakhta, T. Boiveau, Y. Maday, O. Mula, Epidemiological forecasting with model reduction of compartmental models. Application to the COVID-19 pandemic, Biology, 10, 2021. doi: 10.3390/biology10010022. doi: 10.3390/biology10010022
    [46] Q. Griette, J. Demongeot, P. Magal, A robust phenomenological approach to investigate COVID-19 data for France, Math. Appl. Sci. Eng., 2021. doi: 10.5206/mase/14031. doi: 10.5206/mase/14031
    [47] H. P. Gavin, The Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems, Dep. Civ. Environ. Eng., Duke University, (2019), 1-19.
    [48] The COVID Tracking Project at The Atlantic, June 30, 2021. Available from: https://covidtracking.com/.
    [49] D. Bernoulli, Essai d'une nouvelle analyse de la petite Vérole, & des avantages de l'Inoculation pour la prévenir, Mémoire Académie Royale des Sciences, Paris, 1760.
    [50] P. F. Verhulst, Notice sur la loi que la population poursuit dans son accroissement, Corresp. Mathématique Phys., (1938), 113–121.
    [51] K. Dietz, J. A. P. Heesterbeek, Daniel Bernoulli's epidemiological model revisited, Math. Biosci., 180 (2002), 1–21. doi: 10.1016/S0025-5564(02)00122-0. doi: 10.1016/S0025-5564(02)00122-0
    [52] D. Bernoulli, S. Blower, An attempt at a new analysis of the mortality caused by smallpox and of the advantages of inoculation to prevent it, Rev. Med. Virol., 14 (2004), 275. doi: 10.1002/rmv.443. doi: 10.1002/rmv.443
    [53] B. Tang, X. Wang, Q. Li, N. L. Bragazzi, S. Tang, Y. Xiao, et al., Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions, J. Clin. Med., 9 (2020), 462. doi: 10.3390/jcm9020462. doi: 10.3390/jcm9020462
    [54] J. T. Wu, K. Leung, M. Bushman, N. Kishore, R. Niehus, P. M. de Salazar, et al., Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China, Nat. Med., 26 (2020), 506–510. doi: 10.1038/s41591-020-0822-7. doi: 10.1038/s41591-020-0822-7
    [55] R. M. Anderson, R. M. May. Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, 1992.
    [56] N. T. J. Bailey, The Mathematical Theory of Epidemics, Hafner Publishing Co., New York, 1957.
    [57] F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer, New York, $2^nd$ edition, 2012.
    [58] F. Brauer, C. Castillo-Chavez, Z. Feng, Mathematical Models in Epidemiology, Springer, New York, 2019.
    [59] F. Brauer, P. van den Driessche, J. Wu, Mathematical Epidemiology, Springer, Berlin, Germany, 2008.
    [60] S. Busenberg, K. Cooke, Vertically Transmitted Diseases, Springer-Verlag, Berlin, 1993.
    [61] O. Diekmann, H. Heesterbeek, T. Britton, Mathematical Tools for Understanding Infectious Disease Dynamics, Princeton University Press, Princeton, NJ, 2013.
    [62] H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653. doi: 10.1137/S0036144500371907. doi: 10.1137/S0036144500371907
    [63] M. J. Keeling, P. Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, Princeton, NJ, 2008.
    [64] J. D. Murray, Mathematical Biology, Biomathematics, Springer-Verlag, Berlin, 1989.
    [65] H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton, NJ, 2003.
    [66] H. Kawasuji, Y. Takegoshi, M. Kaneda, A. Ueno, Y. Miyajima, K. Kawago, et al., Transmissibility of COVID-19 depends on the viral load around onset in adult and symptomatic patients, PLoS ONE, (2020), e0243597. doi: 10.1371/journal.pone.0243597. doi: 10.1371/journal.pone.0243597
    [67] S. E. Kim, H. S. Jeong, Y. Yu, S. U. Shin, S. Kim, T. H. Oh, et al., Viral kinetics of SARS-CoV-2 in asymptomatic carriers and presymptomatic patients, Int. J. Infect. Dis, , 95 (2020), 441–443. doi: 10.1016/j.ijid.2020.04.083. doi: 10.1016/j.ijid.2020.04.083
    [68] K. P. Hadeler, Parameter identification in epidemic models, Math. Biosci., 229 (2011), 185–189. doi: 10.1016/j.mbs.2010.12.004. doi: 10.1016/j.mbs.2010.12.004
    [69] A. Cori, N. M. Ferguson, C. Fraser, S. Cauchemez, A new framework and software to estimate time-varying reproduction numbers during epidemics, Am. J. Epidemiol., 178 (2013), 1505–1512. doi: 10.1093/aje/kwt133. doi: 10.1093/aje/kwt133
    [70] J. Scire, S. A. Nadeau, T. Vaughan, B. Gavin, S. Fuchs, J. Sommer, et al., Reproductive number of the COVID-19 epidemic in Switzerland with a focus on the Cantons of Basel-Stadt and Basel-Landschaft, Swiss Med. Wkly., 150 (2020), w20271. doi: 10.4414/smw.2020.20271. doi: 10.4414/smw.2020.20271
    [71] O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $r_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. doi: 10.1007/BF00178324. doi: 10.1007/BF00178324
    [72] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. doi: 10.1016/S0025-5564(02)00108-6. doi: 10.1016/S0025-5564(02)00108-6
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2857) PDF downloads(122) Cited by(9)

Article outline

Figures and Tables

Figures(25)  /  Tables(25)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog