Research article Special Issues

Secure and failure hybrid delay enabled a lightweight RPC and SHDS schemes in Industry 4.0 aware IIoHT enabled fog computing

  • Received: 22 October 2021 Accepted: 12 November 2021 Published: 17 November 2021
  • These days, the Industrial Internet of Healthcare Things (IIT) enabled applications have been growing progressively in practice. These applications are ubiquitous and run onto the different computing nodes for healthcare goals. The applications have these tasks such as online healthcare monitoring, live heartbeat streaming, and blood pressure monitoring and need a lot of resources for execution. In IIoHT, remote procedure call (RPC) mechanism-based applications have been widely designed with the network and computational delay constraints to run healthcare applications. However, there are many requirements of IIoHT applications such as security, network and computation, and failure efficient RPC with optimizing the quality of services of applications. In this study, the work devised the lightweight RPC mechanism for IIoHT applications and considered the hybrid constraints in the system. The study suggests the secure hybrid delay scheme (SHDS), which schedules all healthcare workloads under their deadlines. For the scheduling problem, the study formulated this problem based on linear integer programming, where all constraints are integer, as shown in the mathematical model. Simulation results show that the proposed SHDS scheme and lightweight RPC outperformed the hybrid for IIoHT applications and minimized 50% delays compared to existing RPC and their schemes.

    Citation: Mazhar Ali Dootio, Abdullah Lakhan, Ali Hassan Sodhro, Tor Morten Groenli, Narmeen Zakaria Bawany, Samrat Kumar. Secure and failure hybrid delay enabled a lightweight RPC and SHDS schemes in Industry 4.0 aware IIoHT enabled fog computing[J]. Mathematical Biosciences and Engineering, 2022, 19(1): 513-536. doi: 10.3934/mbe.2022024

    Related Papers:

  • These days, the Industrial Internet of Healthcare Things (IIT) enabled applications have been growing progressively in practice. These applications are ubiquitous and run onto the different computing nodes for healthcare goals. The applications have these tasks such as online healthcare monitoring, live heartbeat streaming, and blood pressure monitoring and need a lot of resources for execution. In IIoHT, remote procedure call (RPC) mechanism-based applications have been widely designed with the network and computational delay constraints to run healthcare applications. However, there are many requirements of IIoHT applications such as security, network and computation, and failure efficient RPC with optimizing the quality of services of applications. In this study, the work devised the lightweight RPC mechanism for IIoHT applications and considered the hybrid constraints in the system. The study suggests the secure hybrid delay scheme (SHDS), which schedules all healthcare workloads under their deadlines. For the scheduling problem, the study formulated this problem based on linear integer programming, where all constraints are integer, as shown in the mathematical model. Simulation results show that the proposed SHDS scheme and lightweight RPC outperformed the hybrid for IIoHT applications and minimized 50% delays compared to existing RPC and their schemes.



    加载中


    [1] L. A. Mastoi, Q. Mastoi, M. Elhoseny, M. S. Memon, M. A. Mohammed, Deep neural network-based application partitioning and scheduling for hospitals and medical enterprises using iot assisted mobile fog cloud, Enterp. Inf. Syst., (2021), 1–23. doi: 10.1080/17517575.2021.1883122. doi: 10.1080/17517575.2021.1883122
    [2] H. Zhu, P. Tiwari, A. Ghoneim, M. S. Hossain, A collaborative ai-enabled pretrained language model for aiot domain question answering, IEEE Trans. Ind. Inf., (2021). doi: 10.1109/TII.2021.3097183. doi: 10.1109/TII.2021.3097183
    [3] A. Lakhan, M. Ahmad, M. Bilal, A. Jolfaei, R. M. Mehmood, Mobility aware blockchain enabled offloading and scheduling in vehicular fog cloud computing, IEEE Trans. Intell. Transp. Syst., (2021), doi: 10.1109/TITS.2021.3056461. doi: 10.1109/TITS.2021.3056461
    [4] S. Mishra, H. Thakkar, P. K. Mallick, P. Tiwari, A. Alamri, A sustainable ioht based computationally intelligent healthcare monitoring system for lung cancer risk detection, Sustainable Cities Soc., 103079, (2021). doi: 10.1016/j.scs.2021.103079. doi: 10.1016/j.scs.2021.103079
    [5] A. Lakhan, M. S. Memon, M. Elhoseny, M. A. Mohammed, M. Qabulio, M. Abdel-Basset, et al., Cost-efficient mobility offloading and task scheduling for microservices iovt applications in container-based fog cloud network, Cluster Comput., (2021), 1–23. doi: 10.1007/s10586-021-03333-0. doi: 10.1007/s10586-021-03333-0
    [6] A. Lakhan, M. A. Mohammed, A. N. Rashid, S. Kadry, T. Panityakul, K. H. Abdulkareem, et al., Smart-contract aware ethereum and client-fog-cloud healthcare system, Sensors, 21 (2021), 4093. doi: 10.3390/s21124093. doi: 10.3390/s21124093
    [7] A. Lakhan, M. A. Dootio, T. M. Groenli, A. H. Sodhro, M. S. Khokhar, Multi-layer latency aware workload assignment of e-transport iot applications in mobile sensors cloudlet cloud networks, Electronics, 10 (2021), 1719. doi: 10.3390/electronics10141719. doi: 10.3390/electronics10141719
    [8] M. Hussain, L. F. Wei, A. Lakhan, S. Wali, S. Ali, A. Hussain, Energy and performance-efficient task scheduling in heterogeneous virtualized cloud computing, Sustainable Comput. Inf. Syst., 30 (2021), 100517. doi: 10.1016/j.suscom.2021.100517. doi: 10.1016/j.suscom.2021.100517
    [9] A. Lakhan, X. Li, Transient fault aware application partitioning computational offloading algorithm in microservices based mobile cloudlet networks, Computing, 102 (2020), 105–139. doi: 10.1007/s00607-019-00733-4. doi: 10.1007/s00607-019-00733-4
    [10] A. Lakhan, L. Xiaoping, Energy aware dynamic workflow application partitioning and task scheduling in heterogeneous mobile cloud network, in 2018 International Conference on Cloud Computing, Big Data and Blockchain (ICCBB), IEEE, (2018), 1–8. doi: 10.1109/ICCBB.2018.8756442.
    [11] A. Lakhan, X. Li, Content aware task scheduling framework for mobile workflow applications in heterogeneous mobile-edge-cloud paradigms: Catsa framework, in 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), IEEE, (2019), 242–249. doi: 10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00044.
    [12] A. Lakhan, X. Li, Mobility and fault aware adaptive task offloading in heterogeneous mobile cloud environments, EAI Endorsed Trans. Mobile Commun. Appl., 5 (2019). doi: 10.4108/eai.3-9-2019.159947. doi: 10.4108/eai.3-9-2019.159947
    [13] J. Qian, P. Tiwari, S. P. Gochhayat, H. M. Pandey, A noble double-dictionary-based ecg compression technique for ioth, IEEE Internet Things J., 7 (2020), 10160–10170. doi: 10.1109/JIOT.2020.2974678. doi: 10.1109/JIOT.2020.2974678
    [14] F. Zhang, M. M. Wang, Stochastic congestion game for load balancing in mobile edge computing, IEEE Internet Things J., (2020). doi: 10.1109/JIOT.2020.3008009. doi: 10.1109/JIOT.2020.3008009
    [15] A. Lakhan, Q. Mastoi, M. A. Dootio, F. Alqahtani, I. R. Alzahrani, F. Baothman, et al., Hybrid workload enabled and secure healthcare monitoring sensing framework in distributed fog-cloud network, electronics, 10 (2021), 1974. doi: 10.3390/electronics10161974. doi: 10.3390/electronics10161974
    [16] F. H. Khoso, A. Lakhan, A. A. Arain, M. A. Soomro, S. Z. Nizamani, K. Kanwar, A microservice-based system for industrial internet of things in fog-cloud assisted network, Eng., Technol. Appl. Sci. Res., 11 (2021), 7029–7032. doi: 10.48084/etasr.4077. doi: 10.48084/etasr.4077
    [17] F. H. Khoso, A. A. Arain, A. Lakhan, A. Kehar, S. Z. Nizamani, Proposing a novel iot framework by identifying security and privacy issues in fog cloud services network, Int. J, 9 (2021), 592–596. doi: 10.30534/ijeter/2021/10952021. doi: 10.30534/ijeter/2021/10952021
    [18] A. Lakhan, R. Singh, Implementation of etl tool for data warehousing for non-hodgkin lymphoma (nhl) cancer in public sector, pakistan, Int. J., 9 (2021). doi: 10.30534/ijeter/2021/27972021. doi: 10.30534/ijeter/2021/27972021
    [19] A. Lakhan, F. H. Khoso, A. A. Arain, K. Kanwar, Serverless based functions aware framework for healthcare application, Int. J., 9 (2021). doi: 10.30534/ijeter/2021/19942021. doi: 10.30534/ijeter/2021/19942021
    [20] U. Rehman, M. A. S. A. Lakhan, A review on state of the art in flipped classroom technology a blended e-learning, Int. J., 9 (2021). doi: 10.30534/ijeter/2021/22972021. doi: 10.30534/ijeter/2021/22972021
    [21] I. A. Jamali, A. Lakhan, D. Kumar, A. R. Mahessar, R. lodhi, Energy efficient task assignment algorithm framework in mo-bile cloud computing, GSJ, 6 (2018), 171.
    [22] A. L. Mujeeb-ur Rehman, Z. Hussain, F. H. Khoso, A. A. Arain, Cyber security intelligence and ethereum blockchain technology for e-commerce, Int. J., 9 (2021).
    [23] A. Lakhan, D. K. Sajnani, M. Tahir, M. Aamir, R. Lodhi, Delay sensitive application partitioning and task scheduling in mobile edge cloud prototyping, in International Conference on 5G for Ubiquitous Connectivity, Springer, (2018), 59–80.
    [24] D. K. Sajnani, A. R. Mahesar, A. Lakhan, I. A. Jamali, R. Lodhi, M. Aamir, Latency aware optimal workload assignment in mobile edge cloud offloading network, in 2018 IEEE 4th International Conference on Computer and Communications (ICCC), IEEE, (2018), 658–662. doi: 10.1109/CompComm.2018.8780954.
    [25] D. K. Sajnani, A. R. Mahesar, A. Lakhan, I. A. Jamali, et al., Latency aware and service delay with task scheduling in mobile edge computing, Commun. Network, 10 (2018), 127. doi: 10.4236/cn.2018.104011. doi: 10.4236/cn.2018.104011
    [26] A. H. Sodhro, Z. Luo, A. K. Sangaiah, S. W. Baik, Mobile edge computing based qos optimization in medical healthcare applications, Int. J. Inf. Manage., 45 (2019), 308–318. doi: 10.4236/cn.2018.104011. doi: 10.4236/cn.2018.104011
    [27] A. H. Sodhro, S. Pirbhulal, V. H. C. De Albuquerque, Artificial intelligence-driven mechanism for edge computing-based industrial applications, IEEE Trans. Ind. Inf., 15 (2019), 4235–4243. doi: 10.1109/TII.2018.2889692
    [28] M. Muzammal, R. Talat, A. H. Sodhro, S. Pirbhulal, A multi-sensor data fusion enabled ensemble approach for medical data from body sensor networks, Inf. Fusion, 53 (2020), 155–164. doi: 10.1109/TII.2019.2902878. doi: 10.1109/TII.2019.2902878
    [29] H. Magsi, A. H. Sodhro, F. A. Chachar, S. A. K. Abro, G. H. Sodhro, S. Pirbhulal, Evolution of 5g in internet of medical things, in 2018 international conference on computing, mathematics and engineering technologies (iCoMET), IEEE, (2018), 1–7. doi: 10.1109/ICOMET.2018.8346428.
    [30] T. Zhang, A. H. Sodhro, Z. Luo, N. Zahid, M. W. Nawaz, S. Pirbhulal, et al., A joint deep learning and internet of medical things driven framework for elderly patients, IEEE Access, 8 (2020), 75822–75832. doi: 10.1109/ACCESS.2020.2989143. doi: 10.1109/ACCESS.2020.2989143
    [31] T. Li, Z. Wang, Y. Chen, C. Li, Y. Jia, Y. Yang, Is semi-selfish mining available without being detected? Int. J. Intell. Syst., 2021. doi: 10.1002/int.22656. doi: 10.1002/int.22656
    [32] A. A. Mutlag, M. K. A. Ghani, M. A. Mohammed, A. Lakhan, O. Mohd, K. H. Abdulkareem, et al., Multi-agent systems in fog-cloud computing for critical healthcare task management model (chtm) used for ecg monitoring, Sensors, 21 (2021), 6923. doi: 10.3390/s21206923. doi: 10.3390/s21206923
    [33] X. Yu, Z. Wang, Y. Wang, F. Li, T. Li, Y. Chen, et al., Impsuic: A quality updating rule in mixing coins with maximum utilities, Int. J. Intell. Syst., 36 (2020), 1182–1198.
    [34] T. Li, Y. Chen, Y. Wang, Y. Wang, M. Zhao, H. Zhu, et al., Rational protocols and attacks in blockchain system, Secur. Commun. Networks, 2020 (2020), 1–11. doi: 10.1155/2020/8839047. doi: 10.1155/2020/8839047
    [35] G. Yang, Y. Wang, Z. Wang, Y. Tian, X. Yu, S. Li, Ipbsm: An optimal bribery selfish mining in the presence of intelligent and pure attackers, Int. J. Intell. Syst., 35 (2020), 1735–1748. doi: 10.1002/int.22270. doi: 10.1002/int.22270
    [36] Y. Wang, G. Yang, T. Li, L. Zhang, Y. Wang, L. Ke, et al., Optimal mixed block withholding attacks based on reinforcement learning, Int. J. Intell. Syst., 35 (2020), 2032–2048. doi: 10.1002/int.22282. doi: 10.1002/int.22282
    [37] X. Liu, X. Yu, H. Zhu, G. Yang, Y. Wang, X. Yu, et al., A game-theoretic approach of mixing different qualities of coins, Int. J. Intell. Syst., 35 (2020), 1899–1911. doi: 10.1002/int.22277. doi: 10.1002/int.22277
    [38] Ö. Çelikel, T. Ovatman, Distributed application checkpointing for replicated state machines, Scalable Comput.: Pract. Exper., 22 (2021), 67–79. doi: 10.12694/scpe.v22i1.1840. doi: 10.12694/scpe.v22i1.1840
    [39] R. Wang, N. Chen, X. Yao, L. Hu, Fasdq: Fault-tolerant adaptive scheduling with dynamic qos-awareness in edge containers for delay-sensitive tasks, Sensors, 21 (2021), 2973. doi: 10.3390/s21092973. doi: 10.3390/s21092973
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3056) PDF downloads(84) Cited by(10)

Article outline

Figures and Tables

Figures(10)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog