[1]
|
H. Sharma, P. K. Mishra, S. Talegaonkar, B. Vaidya, Metal nanoparticles: a theranostic nanotool against cancer, Drug Discov. Today, 20 (2015), 1143-1151. doi: 10.1016/j.drudis.2015.05.009
|
[2]
|
O. Ramirez, P. Aristizabal, A. Zaidi, R. C. Ribeiro, L. E. Bravo, Implementing a Childhood Cancer Outcomes Surveillance System Within a Population-Based Cancer Registry, J. Global Oncology., (2018), 1-11.
|
[3]
|
J. S. Slone, A. K. Slone, O. Wally, P. Semetsa, M. Raletshegwana, S. Alisanski, et al., Establishing a Pediatric Hematology-Oncology Program in Botswana, J. Glob. Oncol., (2018), 1-9.
|
[4]
|
R. L. Siegel, K. D. Miller, A. Jemal, Cancer statistics, 2016, CA: Cancer J. Clin., 66 (2016), 7-30.
|
[5]
|
E. Jabbour, H. Kantarjian, Chronic myeloid leukemia: 2012 update on diagnosis, monitoring, and management, Am. J. Hematol., 87 (2012), 1037-1045.
|
[6]
|
S. Cuellar, M. Vozniak, J. Rhodes, N. Forcello, D. Olszta, BCR-ABL1 tyrosine kinase inhibitors for the treatment of chronic myeloid leukemia, J. Oncol. Pharm. Pract., 24 (2018), 433-452. doi: 10.1177/1078155217710553
|
[7]
|
M. Zimmermann, C. Oehler, U. Mey, P. Ghadjar, D. R. Zwahlen, Radiotherapy for Non-Hodgkin's lymphoma: still standard practice and not an outdated treatment option, Radiat. Oncol., 11 (2016), 110. doi: 10.1186/s13014-016-0690-y
|
[8]
|
K. V. Deepa, A. Gadgil, J. Löfgren, S. Mehare, P. Bhandarkar, N. Roy, Is quality of life after mastectomy comparable to that after breast conservation surgery? A 5-year follow up study from Mumbai, India, Qual. Life Res., 29 (2020), 683-692.
|
[9]
|
E. Crowley, F. Di Nicolantonio, F. Loupakis, A. Bardelli, Liquid biopsy: monitoring cancer-genetics in the blood, Nat. Rev. Clin. Oncol., 10 (2013), 472-484. doi: 10.1038/nrclinonc.2013.110
|
[10]
|
L. C. Gomes, F. C. G. Evangelista, L. P. de Sousa, S. S. da S. Araujo, M. das G. Carvalho, A. de P. Sabino, Prognosis biomarkers evaluation in chronic lymphocytic leukemia, Hematol. Oncol. Stem Cell Ther., 10 (2017), 57-62. doi: 10.1016/j.hemonc.2016.12.004
|
[11]
|
M. Pola, S. B. Rajulapati, C. P. Durthi, R. R. Erva, M. Bhatia, In silico modelling and molecular dynamics simulation studies on L-Asparaginase isolated from bacterial endophyte of Ocimum tenuiflorum, Enzyme Microb. Technol., 117 (2018), 32-40. doi: 10.1016/j.enzmictec.2018.06.005
|
[12]
|
R. Gavidia, S. L. Fuentes, R. Vasquez, M. Bonilla, M. C. Ethier, C. Diorio, et al., Low socioeconomic status is associated with prolonged times to assessment and treatment, sepsis and infectious death in pediatric fever in El salvador, PLoS ONE, 7 (2012).
|
[13]
|
M. Sullivan, E. Bouffet, C. Rodriguez-Galindo, S. Luna-Fineman, M. S. Khan, P. Kearns, et al., The COVID-19 pandemic: A rapid global response for children with cancer from SIOP, COG, SIOP-E, SIOP-PODC, IPSO, PROS, CCI, and St Jude Global, Pediatr. Blood Cancer, 67 (2020).
|
[14]
|
U. I. Nwagbara, T. G. Ginindza, K. W. Hlongwana, Health systems influence on the pathways of care for lung cancer in low- And middle-income countries: A scoping review, Glob. Health, 16 (2020).
|
[15]
|
S. Abdelmabood, A. E. Fouda, F. Boujettif, A. Mansour, Treatment outcomes of children with acute lymphoblastic leukemia in a middle-income developing country: high mortalities, early relapses, and poor survival, J. Pediatr., 96 (2020), 108-116.
|
[16]
|
P. Garcia-Gonzalez, P. Boultbee, D. Epstein, Novel Humanitarian Aid Program: The Glivec International Patient Assistance Program—Lessons Learned From Providing Access to Breakthrough Targeted Oncology Treatment in Low- and Middle-Income Countries, J. Glob. Oncol., 1 (2015), 37-45. doi: 10.1200/JGO.2015.000570
|
[17]
|
E. Tekinturhan, E. Audureau, M. P. Tavolacci, P. Garcia-Gonzalez, J. Ladner, J. Saba, Improving access to care in low and middle-income countries: Institutional factors related to enrollment and patient outcome in a cancer drug access program, BMC Health Serv. Res., 13 (2013).
|
[18]
|
C. A. Umeh, P. Garcia-Gonzalez, D. Tremblay, R. Laing, The survival of patients enrolled in a global direct-to-patient cancer medicine donation program: The Glivec International Patient Assistance Program (GIPAP), EClinicalMedicine, 19 (2020).
|
[19]
|
N. Tapela, I. Nzayisenga, R. Sethi, J. B. Bigirimana, H. Habineza, V. Hategekimana, et al., Treatment of Chronic Myeloid Leukemia in Rural Rwanda: Promising Early Outcomes, J. Glob. Oncol., 2 (2016), 129-137. doi: 10.1200/JGO.2015.001727
|
[20]
|
M. M. Yallapu, S. F. Othman, E. T. Curtis, B. K. Gupta, M. Jaggi, S. C. Chauhan, Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy, Biomaterials, 32 (2011), 1890-1905. doi: 10.1016/j.biomaterials.2010.11.028
|
[21]
|
A. Burgess, C. A. Ayala-Grosso, M. Ganguly, J. F. Jordã o, I. Aubert, K. Hynynen, Targeted Delivery of Neural Stem Cells to the Brain Using MRI-Guided Focused Ultrasound to Disrupt the Blood-Brain Barrier, PLoS ONE, 6 (2011), e27877.
|
[22]
|
M. Salimi, S. Sarkar, R. Saber, H. Delavari, A. M. Alizadeh, H. T. Mulder, Magnetic hyperthermia of breast cancer cells and MRI relaxometry with dendrimer-coated iron-oxide nanoparticles, Cancer Nanotechnol., 9 (2018).
|
[23]
|
S. K. Sriraman, B. Aryasomayajula, V. P. Torchilin, Barriers to drug delivery in solid tumors, Tissue Barriers, 2 (2014), e29528.
|
[24]
|
B. J. Tefft, S. Uthamaraj, J. J. Harburn, M. Klabusay, D. Dragomir-Daescu, G. S. Sandhu, Cell Labeling and Targeting with Superparamagnetic Iron Oxide Nanoparticles, J. Vis. Exp., 2015 (2015).
|
[25]
|
I. Roeder, M. d'Inverno, New experimental and theoretical investigations of hematopoietic stem cells and chronic myeloid leukemia, Blood Cells, Mol. Dis., (2009), 88-97.
|
[26]
|
R. S. Arora, S. Bakhshi, Indian Pediatric Oncology Group (InPOG) - Collaborative research in India comes of age, Pediatr. Hematol. Oncol. J., 1 (2016), 13-17. doi: 10.1016/j.phoj.2016.04.005
|
[27]
|
J. Beksisa, T. Getinet, S. Tanie, J. Diribi, Y. Hassen, Survival and prognostic determinants of prostate cancer patients in Tikur Anbessa Specialized Hospital, Addis Ababa, Ethiopia: A retrospective cohort study, PLoS ONE, 15 (2020).
|
[28]
|
H. Halalsheh, N. Abuirmeileh, R. Rihani, F. Bazzeh, L. Zaru, F. Madanat, Outcome of childhood acute lymphoblastic leukemia in Jordan, Pediatr. Blood Cancer, 57 (2011), 385-391. doi: 10.1002/pbc.23065
|
[29]
|
H. J. Hoekstra, T. Wobbes, E. Heineman, S. Haryono, T. Aryandono, C. M. Balch, Fighting Global Disparities in Cancer Care: A Surgical Oncology View, Ann. Surg. Oncol., 23 (2016), 2131-2136. doi: 10.1245/s10434-016-5194-3
|
[30]
|
C. M. de Oliveira, L. W. Musselwhite, N. de Paula Pantano, F. L. Vazquez, J. S. Smith, J. Schweizer, et al., Detection of HPV E6 oncoprotein from urine via a novel immunochromatographic assay, PLoS ONE, 15 (2020).
|
[31]
|
L. Vasudevan, K. Schroeder, Y. Raveendran, K. Goel, C. Makarushka, N. Masalu, et al, Using digital health to facilitate compliance with standardized pediatric cancer treatment guidelines in Tanzania: Protocol for an early-stage effectiveness-implementation hybrid study, BMC Cancer, 20 (2020).
|
[32]
|
J. A. Alonso, A. Luiza Cortez, S. Klasen, LDC and other country groupings: How useful are current approaches to classify countries in a more heterogeneous developing world?, 2014.
|
[33]
|
A. P. Singh, A. Biswas, A. Shukla, P. Maiti, Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles, Signal Transduct. Target. Ther., 4 (2019).
|
[34]
|
S. M. Khoshfetrat, M. A. Mehrgardi, Amplified detection of leukemia cancer cells using an aptamer-conjugated gold-coated magnetic nanoparticles on a nitrogen-doped graphene modified electrode, Bioelectrochemistry., 114 (2017), 24-32. doi: 10.1016/j.bioelechem.2016.12.001
|
[35]
|
Y. Yu, S. Duan, J. He, W. Liang, J. Su, J. Zhu, et al., Highly sensitive detection of leukemia cells based on aptamer and quantum dots, Oncol. Rep., 36 (2016), 886-892. doi: 10.3892/or.2016.4866
|
[36]
|
M. Longmire, P. L. Choyke, H. Kobayashi, Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats, Nanomedicine, 3 (2008), 703-717. doi: 10.2217/17435889.3.5.703
|
[37]
|
I. Tazi, L. Mahmal, H. Nafil, Monoclonal antibodies in hematological malignancies: Past, present and future, J. Cancer Res. Ther., 7 (2011), 399.
|
[38]
|
S. L. Sahoo, C. H. Liu, W. C. Wu, Lymphoma cell isolation using multifunctional magnetic nanoparticles: Antibody conjugation and characterization, RSC Advances, 7 (2017), 22468-22478. doi: 10.1039/C7RA05697D
|
[39]
|
S. Biffi, S. Capolla, C. Garrovo, S. Zorzet, A. Lorenzon, E. Rampazzo, et al., Targeted tumor imaging of anti-CD20-polymeric nanoparticles developed for the diagnosis of B-cell malignancies, Int. J. Nanomed., 10 (2015), 4099.
|
[40]
|
C. M. MacLaughlin, N. Mullaithilaga, G. Yang, S. Y. Ip, C. Wang, G. C. Walker, Surface-Enhanced Raman Scattering Dye-Labeled Au Nanoparticles for Triplexed Detection of Leukemia and Lymphoma Cells and SERS Flow Cytometry, Langmuir, 29 (2013), 1908-1919. doi: 10.1021/la303931c
|
[41]
|
N. P. Gossai, J. A. Naumann, N.-S. Li, E. A. Zamora, D. J. Gordon, J. A. Piccirilli, et al., Drug conjugated nanoparticles activated by cancer cell specific mRNA, Oncotarget, 7 (2016), 38243-38256. doi: 10.18632/oncotarget.9430
|
[42]
|
T. Simon, C. Tomuleasa, A. Bojan, I. Berindan-Neagoe, S. Boca, S. Astilean, Design of FLT3 Inhibitor - Gold Nanoparticle Conjugates as Potential Therapeutic Agents for the Treatment of Acute Myeloid Leukemia, Nanoscale Res. Lett., 10 (2015), 466. doi: 10.1186/s11671-015-1154-2
|
[43]
|
C. Tomuleasa, B. Petrushev, S. Boca, T. Simon, C. Berce, I. Frinc, et al., Gold nanoparticles enhance the effect of tyrosine kinase inhibitors in acute myeloid leukemia therapy, Int. J. Nanomed., 11 (2016), 641.
|
[44]
|
S. Song, Y. Hao, X. Yang, P. Patra, J. Chen, Using Gold Nanoparticles as Delivery Vehicles for Targeted Delivery of Chemotherapy Drug Fludarabine Phosphate to Treat Hematological Cancers, J. Nanosci. Nanotechnol., 16 (2016), 2582-2586. doi: 10.1166/jnn.2016.12349
|
[45]
|
G. J. Cook, T. S. Pardee, Animal models of leukemia: any closer to the real thing?, Cancer Metastasis Rev., 32 (2013), 63-76. doi: 10.1007/s10555-012-9405-5
|
[46]
|
R. Kohnken, P. Porcu, A. Mishra, Overview of the Use of Murine Models in Leukemia and Lymphoma Research, Front. Oncol., 7 (2017).
|
[47]
|
C. M. Dawidczyk, L. M. Russell, P. C. Searson, Nanomedicines for cancer therapy: state-of-the-art and limitations to pre-clinical studies that hinder future developments, Front. Chem., 2 (2014).
|
[48]
|
A. Stéphanou, S. R. McDougall, A. R. A. Anderson, M. A. J. Chaplain, Mathematical modelling of flow in 2D and 3D vascular networks: Applications to anti-angiogenic and chemotherapeutic drug strategies, Math. Comput. Model., 41 (2005), 1137-1156. doi: 10.1016/j.mcm.2005.05.008
|
[49]
|
B. Peng, Y. Liu, Y. Zhou, L. Yang, G. Zhang, Y. Liu, Modeling Nanoparticle Targeting to a Vascular Surface in Shear Flow Through Diffusive Particle Dynamics, Nanoscale Res. Lett., 10 (2015).
|
[50]
|
F. Jost, K. Rinke, T. Fischer, E. Schalk, S. Sager, Optimum Experimental Design for Patient Specific Mathematical Leukopenia Models, IFAC-PapersOnLine, 49 (2016), 344-349.
|
[51]
|
J. C. Jaime-Pérez, O. N. López-Razo, G. García-Arellano, M. A. Pinzón-Uresti, R. A. Jiménez-Castillo, O. González-Llano, et al., Results of Treating Childhood Acute Lymphoblastic Leukemia in a Low-middle Income Country: 10 Year Experience in Northeast Mexico, Arch. Med. Res., 47 (2016), 668-676. doi: 10.1016/j.arcmed.2017.01.004
|
[52]
|
D. Bansal, A. Davidson, E. Supriyadi, F. Njuguna, R. C. Ribeiro, G. J. L. Kaspers, SIOP PODC adapted risk stratification and treatment guidelines: Recommendations for acute myeloid leukemia in resource-limited settings, Pediatr. Blood Cancer, (2019), e28087.
|
[53]
|
M. C. Santos, A. B. Seabra, M. T. Pelegrino, P. S. Haddad, Synthesis, characterization and cytotoxicity of glutathione- and PEG-glutathione-superparamagnetic iron oxide nanoparticles for nitric oxide delivery, Appl. Surf. Sci., 367 (2016), 26-35.
|
[54]
|
Z. Payandeh, M. Rajabibazl, Y. Mortazavi, A. Rahimpour, A. H. Taromchi, Ofatumumab monoclonal antibody affinity maturation through in silico modeling, Iran. Biomed. J., 22 (2018), 180-192.
|
[55]
|
S. Sadighian, K. Rostamizadeh, H. Hosseini-Monfared, M. Hamidi, Doxorubicin-conjugated core-shell magnetite nanoparticles as dual-targeting carriers for anticancer drug delivery, Colloids Surf. B Biointerfaces, 117 (2014), 406-413. doi: 10.1016/j.colsurfb.2014.03.001
|
[56]
|
Y. Li, B. N. Bekele, Y. Ji, J. D. Cook, Dose-schedule finding in phase I/Ⅱ clinical trials using a Bayesian isotonic transformation, Stat. Med., 27 (2008), 4895-4913. doi: 10.1002/sim.3329
|
[57]
|
V. Babashov, I. Aivas, M. A. Begen, J. Q. Cao, G. Rodrigues, D. D'Souza, et al., Reducing Patient Waiting Times for Radiation Therapy and Improving the Treatment Planning Process: a Discrete-event Simulation Model (Radiation Treatment Planning), Clin. Oncol., 29 (2017), 385-391. doi: 10.1016/j.clon.2017.01.039
|
[58]
|
V. Lopresto, R. Pinto, L. Farina, M. Cavagnaro, Microwave thermal ablation: Effects of tissue properties variations on predictive models for treatment planning, Med. Eng. Phys., 46 (2017), 63-70. doi: 10.1016/j.medengphy.2017.06.008
|
[59]
|
S. R. McDougall, A. R. A. Anderson, M. A. J. Chaplain, Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: Clinical implications and therapeutic targeting strategies, J. Theor. Biol., 241 (2006), 564-589. doi: 10.1016/j.jtbi.2005.12.022
|
[60]
|
L. M. Drusbosky, R. Vidva, S. Gera, A. V. Lakshminarayana, V. P. Shyamasundar, A. K. Agrawal, et al., Predicting response to BET inhibitors using computational modeling: A BEAT AML project study, Leuk. Res., 77 (2019), 42-50. doi: 10.1016/j.leukres.2018.11.010
|
[61]
|
D. Silverbush, S. Grosskurth, D. Wang, F. Powell, B. Gottgens, J. Dry, et al., Cell-specific computational modeling of the PIM pathway in acute myeloid leukemia, Cancer Res., 77 (2017), 827-838. doi: 10.1158/0008-5472.CAN-16-1578
|
[62]
|
E. Pefani, N. Panoskaltsis, A. Mantalaris, M. C. Georgiadis, E. N. Pistikopoulos, Design of optimal patient-specific chemotherapy protocols for the treatment of acute myeloid leukemia (AML), Comput. Chem. Eng., 57 (2013), 187-195. doi: 10.1016/j.compchemeng.2013.02.003
|
[63]
|
F. Jost, J. Zierk, T. T. T. Le, T. Raupach, M. Rauh, M. Suttorp, et al., Model-Based Simulation of Maintenance Therapy of Childhood Acute Lymphoblastic Leukemia, Front. Physiol., 11 (2020).
|
[64]
|
R. J. Preen, L. Bull, A. Adamatzky, Towards an evolvable cancer treatment simulator, BioSystems, 182 (2019), 1-7.
|
[65]
|
C. Calmelet, A. Prokop, J. Mensah, L. J. McCawley, P. S. Crooke, Modeling the cancer stem cell hypothesis, Math. Model. Nat. Phenom., 5 (2010), 40-62. doi: 10.1051/mmnp/20105304
|
[66]
|
J. Matschek, E. Bullinger, F. von Haeseler, M. Skalej, R. Findeisen, Mathematical 3D modelling and sensitivity analysis of multipolar radiofrequency ablation in the spine, Math. Biosci., 284 (2017), 51-60. doi: 10.1016/j.mbs.2016.06.008
|
[67]
|
K. Yao, H. Liu, P. Liu, W. Liu, J. Yang, Q. Wei, et al., Molecular modeling studies to discover novel mIDH2 inhibitors with high selectivity for the primary and secondary mutants, Comput. Biol. Chem., 86 (2020).
|
[68]
|
M. Schütt, K. Stamatopoulos, M. J. H. Simmons, H. K. Batchelor, A. Alexiadis, Modelling and simulation of the hydrodynamics and mixing profiles in the human proximal colon using Discrete Multiphysics, Comput. Biol. Med., 121 (2020).
|
[69]
|
N. P. Shah, F. Y. Lee, R. Luo, Y. Jiang, M. Donker, C. Akin, Dasatinib (BMS-354825) inhibits KITD816V, an imatinib-resistant activating mutation that triggers neoplastic growth in most patients with systemic mastocytosis, Blood, 108 (2006), 286-291.
|
[70]
|
T. E. Wheldon, A. Barrett, Radiobiological modelling of the treatment of leukaemia by total body irradiation, Radiother. Oncol., 58 (2001), 227-233. doi: 10.1016/S0167-8140(00)00255-3
|
[71]
|
R. Padhi, M. Kothari, An optimal dynamic inversion-based neuro-adaptive approach for treatment of chronic myelogenous leukemia, Computer Methods Programs Biomed., 87 (2007), 208-224. doi: 10.1016/j.cmpb.2007.05.011
|
[72]
|
X. Kong, H. Sun, P. Pan, D. Li, F. Zhu, S. Chang, et al., How Does the L884P Mutation Confer Resistance to Type-Ⅱ Inhibitors of JAK2 Kinase: A Comprehensive Molecular Modeling Study, Sci Rep., 7 (2017).
|
[73]
|
F. Fröhlich, T. Kessler, D. Weindl, A. Shadrin, L. Schmiester, H. Hache, et al., Efficient Parameter Estimation Enables the Prediction of Drug Response Using a Mechanistic Pan-Cancer Pathway Model, Cell Syst., 7 (2018), 567-579.e6.
|
[74]
|
A. Trehan, D. Bansal, N. Varma, A. Vora, Improving outcome of acute lymphoblastic leukemia with a simplified protocol: report from a tertiary care center in north India, Pediatr. Blood Cancer, 64 (2017).
|
[75]
|
F. Pan, S. Peng, S. Sorensen, E. Dorman, S. Sun, M. Gaudig, et al., Simulation Model of Ibrutinib for Chronic Lymphocytic Leukemia (CLL) With Prior Treatment, Value Health, 17 (2014), A620-A621.
|
[76]
|
A. Mardinoglu, P. J. Cregg, K. Murphy, M. Curtin, A. Prina-Mello, Theoretical modelling of physiologically stretched vessel in magnetisable stent assisted magnetic drug targetingapplication, J. Magn. Magn. Mater., 323 (2011), 324-329.
|
[77]
|
A.D. Grief, G. Richardson, Mathematical modelling of magnetically targeted drug delivery, in: J. Magn. Magn. Mater., 2005: pp. 455-463.
|
[78]
|
I. R. Rədulescu, D. Cândea, A. Halanay, Optimal control analysis of a leukemia model under imatinib treatment, Math. Comput. Simul., 121 (2016), 1-11. doi: 10.1016/j.matcom.2015.03.002
|
[79]
|
D. Paquin, D. Sacco, J. Shamshoian, An analysis of strategic treatment interruptions during imatinib treatment of chronic myelogenous leukemia with imatinib-resistant mutations, Math. Biosci., 262 (2015), 117-124. doi: 10.1016/j.mbs.2015.01.011
|
[80]
|
D. S. Rodrigues, P. F. A. Mancera, T. Carvalho, L. F. Gonçalves, A mathematical model for chemoimmunotherapy of chronic lymphocytic leukemia, Appl. Math. Comput., 349 (2019), 118-133.
|
[81]
|
A. Tridane, R. Yafia, M. A. Aziz-Alaoui, Targeting the quiescent cells in cancer chemotherapy treatment: Is it enough?, Appl. Math. Model., 40 (2016), 4844-4858.
|
[82]
|
V. Vainstein, O. U. Kirnasovsky, Y. Kogan, Z. Agur, Strategies for cancer stem cell elimination: Insights from mathematical modeling, J. Theor. Biol., 298 (2012), 32-41. doi: 10.1016/j.jtbi.2011.12.016
|
[83]
|
N. L. Komarova, Mathematical modeling of cyclic treatments of Chronic Myeloid Leukemia, Math. Biosci. Eng., 8 (2011), 289-306. doi: 10.3934/mbe.2011.8.289
|
[84]
|
J. C. Panetta, A. Gajjar, N. Hijiya, L. J. Hak, C. Cheng, W. Liu, et al., Comparison of Native E. coli and PEG Asparaginase Pharmacokinetics and Pharmacodynamics in Pediatric Acute Lymphoblastic Leukemia, Clin. Pharmacol. Ther., 86 (2009), 651-658. doi: 10.1038/clpt.2009.162
|
[85]
|
T. Radivoyevitch, K. A. Loparo, R. C. Jackson, W. D. Sedwick, On systems and control approaches to the therapeutic gain, BMC Cancer., 6 (2006).
|
[86]
|
M. M. Peet, P. S. Kim, S. I. Niculescu, D. Levy, New computational tools for modeling chronic myelogenous leukemia, Math. Model. Nat. Phenom., 4 (2009), 119-139. doi: 10.1051/mmnp/20094206
|
[87]
|
E. Pefani, N. Panoskaltsis, A. Mantalaris, M. C. Georgiadis, E. N. Pistikopoulos, Chemotherapy drug scheduling for the induction treatment of patients with acute myeloid leukemia, IEEE Trans. Biomed. Eng., 61 (2014), 2049-2056. doi: 10.1109/TBME.2014.2313226
|
[88]
|
D. Barbolosi, J. Ciccolini, C. Meille, X. Elharrar, C. Faivre, B. Lacarelle, et al., Metronomics chemotherapy: Time for computational decision support, Cancer Chemother. Pharmacol., 74 (2014), 647-652. doi: 10.1007/s00280-014-2546-1
|
[89]
|
I. Roeder, M. Horn, I. Glauche, A. Hochhaus, M. C. Mueller, M. Loeffler, Dynamic modeling of imatinib-treated chronic myeloid leukemia: Functional insights and clinical implications, Nat. Med., 12 (2006), 1181-1184. doi: 10.1038/nm1487
|
[90]
|
D. Wei-Chen Chen, J. T. Lynch, C. Demonacos, M. Krstic-Demonacos, J. M. Schwartz, Quantitative analysis and modeling of glucocorticoid-controlled gene expression, Pharmacogenomics, 11 (2010), 1545-1560. doi: 10.2217/pgs.10.125
|
[91]
|
M. A. Nejad, H. M. Urbassek, Diffusion of cisplatin molecules in silica nanopores: Molecular dynamics study of a targeted drug delivery system, J. Mol. Graph. Model., 86 (2019), 228-234. doi: 10.1016/j.jmgm.2018.10.021
|
[92]
|
D. F. Qualley, S. E. Cooper, J. L. Ross, E. D. Olson, W. A. Cantara, K. Musier-Forsyth, Solution Conformation of Bovine Leukemia Virus Gag Suggests an Elongated Structure, J. Mol. Biol., 431 (2019), 1203-1216.
|
[93]
|
M. S. Zabriskie, C. A. Eide, S. K. Tantravahi, N. A. Vellore, J. Estrada, F. E. Nicolini, et al., BCR-ABL1 Compound Mutations Combining Key Kinase Domain Positions Confer Clinical Resistance to Ponatinib in Ph Chromosome-Positive Leukemia, Cancer Cell., 26 (2014), 428-442. doi: 10.1016/j.ccr.2014.07.006
|
[94]
|
S. K. Choubey, J. Jeyaraman, A mechanistic approach to explore novel HDAC1 inhibitor using pharmacophore modeling, 3D- QSAR analysis, molecular docking, density functional and molecular dynamics simulation study, J. Mol. Graph. Model., 70 (2016), 54-69.
|
[95]
|
S. Pricl, Quo vadis, affinity? Clinical evidences and computer-assisted simulations in the imatinib saga, Eur. J. Nanomed., 2 (2009), 22-30.
|
[96]
|
T. Negri, G. M. Pavan, E. Virdis, A. Greco, M. Fermeglia, M. Sandri, et al., T670X KIT mutations in gastrointestinal stromal tumors: Making sense of missense, J. Natl. Cancer Inst. Monographs., 101 (2009), 194-204. doi: 10.1093/jnci/djn477
|
[97]
|
M. Navarrete, E. Rossi, E. Brivio, J. M. Carrillo, M. Bonilla, R. Vasquez, et al., Treatment of childhood acute lymphoblastic leukemia in central America: A lower-middle income countries experience, Pediatr. Blood Cancer, 61 (2014), 803-809. doi: 10.1002/pbc.24911
|
[98]
|
D. L. Gibbons, S. Pricl, P. Posocco, E. Laurini, M. Fermeglia, H. Sun, et al., Molecular dynamics reveal BCR-ABL1 polymutants as a unique mechanism of resistance to PAN-BCR-ABL1 kinase inhibitor therapy, Proc. Natl. Acad. Sci. U.S.A., 111 (2014), 3550-3555. doi: 10.1073/pnas.1321173111
|
[99]
|
P. S. Ayyaswamy, V. Muzykantov, D. M. Eckmann, R. Radhakrishnan, Nanocarrier hydrodynamics and binding in targeted drug delivery: Challenges in numerical modeling and experimental validation, J. Nanotechnol. Eng. Med., 4 (2013).
|
[100]
|
E. Gladilin, P. Gonzalez, R. Eils, Dissecting the contribution of actin and vimentin intermediate filaments to mechanical phenotype of suspended cells using high-throughput deformability measurements and computational modeling, J. Biomech., 47 (2014), 2598-2605. doi: 10.1016/j.jbiomech.2014.05.020
|
[101]
|
A. Vulović, T. Šušteršič, S. Cvijić, S. Ibrić, N. Filipović, Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling, Eur. J. Pharm. Sci., 113 (2018), 171-184.
|
[102]
|
F. Russo, A. Boghi, F. Gori, Numerical simulation of magnetic nano drug targeting in patient-specific lower respiratory tract, J. Magn. Magn. Mater., . 451 (2018), 554-564.
|
[103]
|
S. R. Reiken, D. M. Briedis, The use of an enzyme single fiber reactor in the study of leukemic cell proliferation: In vitro experiments and computer simulation, Leuk. Res., 17 (1993), 121-128. doi: 10.1016/0145-2126(93)90056-Q
|
[104]
|
K. Tomlinson, L. Oesper, Parameter, noise, and tree topology effects in tumor phylogeny inference, BMC Medical Genom., 12 (2019).
|
[105]
|
W. Kulpeng, S. Sompitak, S. Jootar, K. Chansung, Y. Teerawattananon, Cost-utility analysis of dasatinib and nilotinib in patients with chronic myeloid leukemia refractory to first-line treatment with imatinib in Thailand, Clin. Ther., 36 (2014), 534-543. doi: 10.1016/j.clinthera.2014.02.008
|
[106]
|
M. M. Cheng, B. Goulart, D. L. Veenstra, D. K. Blough, E. B. Devine, A network meta-analysis of therapies for previously untreated chronic lymphocytic leukemia, Cancer Treat. Rev., 38 (2012), 1004-1011. doi: 10.1016/j.ctrv.2012.02.006
|
[107]
|
V. Costa, M. McGregor, P. Laneuville, J.M. Brophy, The cost-effectiveness of stem cell transplantations from unrelated donors in adult patients with acute leukemia, Value Health, 10 (2007), 247-255. doi: 10.1111/j.1524-4733.2007.00180.x
|
[108]
|
M. C. Ward, F. Vicini, M. Chadha, L. Pierce, A. Recht, J. Hayman, et al., Radiation Therapy Without Hormone Therapy for Women Age 70 or Above with Low-Risk Early Breast Cancer: A Microsimulation, Int. J. Radiat. Oncol. Biol. Phys., 105 (2019), 296-306. doi: 10.1016/j.ijrobp.2019.06.014
|
[109]
|
Y. Li, K. Holtzer-Goor, C. Uyl-de Groot, M. Al, HG1 Applying Frailty Model in Longitudinal Survivals of Chronic Diseases, Value Health, 14 (2011), A240.
|
[110]
|
E. K. Afenya, Recovery of normal hemopoiesis in disseminated cancer therapy - A model, Math. Biosci., 172 (2001), 15-32. doi: 10.1016/S0025-5564(01)00061-X
|
[111]
|
M. Delord, S. Foulon, J. M. Cayuela, P. Rousselot, J. Bonastre, The rising prevalence of chronic myeloid leukemia in France, Leuk. Res., 69 (2018), 94-99. doi: 10.1016/j.leukres.2018.04.008
|
[112]
|
K. J. Lui, Estimation of proportion ratio in non-compliance randomized trials with repeated measurements in binary data, Stat. Methodol., 5 (2008), 129-141. doi: 10.1016/j.stamet.2007.06.003
|
[113]
|
M. R. Sharma, S. Mehrotra, E. Gray, K. Wu, W. T. Barry, C. Hudis, et al., Personalized Management of Chemotherapy-Induced Peripheral Neuropathy Based on a Patient Reported Outcome: CALGB 40502 (Alliance), J. Clin. Pharmacol., 60 (2020), 444-452. doi: 10.1002/jcph.1559
|
[114]
|
A. Zenati, M. Chakir, M. Tadjine, Global stability analysis and optimal control therapy of blood cell production process (hematopoiesis) in acute myeloid leukemia, J. Theor. Biol., 458 (2018), 15-30. doi: 10.1016/j.jtbi.2018.09.001
|
[115]
|
A. Kottas, Bayesian semiparametric modeling for stochastic precedence, with applications in epidemiology and survival analysis, Lifetime Data Anal., 17 (2011), 135-155.
|
[116]
|
D. R. A. Silveira, L. Quek, I. S. Santos, A. Corby, J. L. Coelho-Silva, D. A. Pereira-Martins, et al., Integrating clinical features with genetic factors enhances survival prediction for adults with acute myeloid leukemia, Blood Adv., 4 (2020), 2339-2350.
|
[117]
|
B. E. Houk, C. L. Bello, D. Kang, M. Amantea, A population pharmacokinetic meta-analysis of sunitinib malate (SU11248) and its primary metabolite (SU12662) in healthy volunteers and oncology patients, Clin. Cancer Res., 15 (2009), 2497-2506. doi: 10.1158/1078-0432.CCR-08-1893
|
[118]
|
X. Sun, B. Hu, Mathematical modeling and computational prediction of cancer drug resistance, Brief. Bioinformatics., 19 (2017), 1382-1399.
|
[119]
|
P. F. Thall, H. Q. Nguyen, E. H. Estey, Patient-specific dose finding based on bivariate outcomes and covariates, Biometrics, 64 (2008), 1126-1136. doi: 10.1111/j.1541-0420.2008.01009.x
|
[120]
|
M. Dejori, B. Schuermann, M. Stetter, Hunting drug targets by systems-level modeling of gene expression profiles, IEEE Trans. Nanobioscience, 3 (2004), 180-191. doi: 10.1109/TNB.2004.833690
|
[121]
|
I. Roeder, M. Herberg, M. Horn, An "age"-structured model of hematopoietic stem cell organization with application to chronic myeloid leukemia, Bull. Math. Biol., 71 (2009), 602-626. doi: 10.1007/s11538-008-9373-7
|
[122]
|
J. C. Panetta, A. Sparreboom, C. H. Pui, M. V. Relling, W. E. Evans, Modeling mechanisms of in vivo variability in methotrexate accumulation and folate pathway inhibition in acute lymphoblastic leukemia cells, PLoS Comput. Biol., 6 (2010).
|
[123]
|
S. Völler, U. Pichlmeier, A. Zens, G. Hempel, Pharmacokinetics of recombinant asparaginase in children with acute lymphoblastic leukemia, Cancer Chemother. Pharmacol., 81 (2018), 305-314.
|
[124]
|
S. E. Medellin-Garibay, N. Hernández-Villa, L. C. Correa-González, M. N. Morales-Barragán, K. P. Valero-Rivera, J. E. Reséndiz-Galván, et al., Population pharmacokinetics of methotrexate in Mexican pediatric patients with acute lymphoblastic leukemia, Cancer Chemother. Pharmacol., 85 (2020), 21-31. doi: 10.1007/s00280-019-03977-1
|
[125]
|
V. I. Avramis, S. A. Spence, Clinical pharmacology of asparaginases in the United States: Asparaginase population pharmacokinetic and pharmacodynamic (PK-PD) models (NONMEM) in adult and pediatric ALL patients, J. Pediatr. Hematol. Oncol., 29 (2007), 239-247. doi: 10.1097/MPH.0b013e318047b79d
|
[126]
|
C. Ono, P. H. Hsyu, R. Abbas, C. M. Loi, S. Yamazaki, Application of physiologically based pharmacokinetic modeling to the understanding of bosutinib pharmacokinetics: Prediction of drug-drug and drug-disease interactions, Drug Metab. Dispos., 45 (2017), 390-398. doi: 10.1124/dmd.116.074450
|
[127]
|
M. J. Gilkey, V. Krishnan, L. Scheetz, X. Jia, A. K. Rajasekaran, P.S. Dhurjati, Physiologically based pharmacokinetic modeling of fluorescently labeled block copolymer nanoparticles for controlled drug delivery in leukemia therapy, CPT: Pharmacometrics and Systems Pharmacology. 4 (2015), 167-174.
|
[128]
|
M. Liangruksa, R. Ganguly, I. K. Puri, Parametric investigation of heating due to magnetic fluid hyperthermia in a tumor with blood perfusion, J. Magn. Magn. Mater., 323 (2011), 708-716. doi: 10.1016/j.jmmm.2010.10.027
|
[129]
|
D. Jayachandran, A. E. Rundell, R. E. Hannemann, T. A. Vik, D. Ramkrishna, Optimal chemotherapy for Leukemia: A model-based strategy for individualized treatment, PLoS ONE, 9 (2014).
|
[130]
|
J. Malinzi, P. Sibanda, H. Mambili-Mamboundou, Response of Immunotherapy to Tumour-TICLs Interactions: A Travelling Wave Analysis, Abstr. Appl. Anal., 2014 (2014).
|
[131]
|
C. Mumba, E. Skjerve, M. Rich, K. M. Rich, Application of system dynamics and participatory spatial group model building in animal health: A case study of East Coast Fever interventions in Lundazi and Monze districts of Zambia, PLoS ONE, 12 (2017).
|
[132]
|
G. D. Clapp, T. Lepoutre, R. El Cheikh, S. Bernard, J. Ruby, H. Labussière-Wallet, et al., Implication of the autologous immune system in BCR-ABL transcript variations in chronic myelogenous leukemia patients treated with imatinib, Cancer Res., 75 (2015), 4053-4062. doi: 10.1158/0008-5472.CAN-15-0611
|
[133]
|
T. Stiehl, N. Baran, A. D. Ho, A. Marciniak-Czochra, Cell division patterns in acute myeloid leukemia stem-like cells determine clinical course: A model to predict patient survival, Cancer Res., 75 (2015), 940-949.
|
[134]
|
L. M. Drusbosky, N. K. Singh, K. E. Hawkins, C. Salan, M. Turcotte, E.A. Wise, et al., A genomics-informed computational biology platform prospectively predicts treatment responses in AML and MDS patients, Blood Adv., 3 (2019), 1837-1847. doi: 10.1182/bloodadvances.2018028316
|
[135]
|
Jahrestagung der Deutschen, Ö sterreichischen und Schweizerischen Gesellschaften für Hä matologie und Medizinische Onkologie Basel, 9.-13. Oktober 2015: Abstracts, Oncology Research and Treatment. 38 (2015), 1-288.
|
[136]
|
J. Przybilla, L. Hopp, M. Lübbert, M. Loeffler, J. Galle, Targeting DNA hypermethylation: Computational modeling of DNA demethylation treatment of acute myeloid leukemia, Epigenetics, 12 (2017), 886-896. doi: 10.1080/15592294.2017.1361090
|
[137]
|
A. Gasselhuber, M. R. Dreher, A. Partanen, P. S. Yarmolenko, D. Woods, B. J. Wood, et al., Targeted drug delivery by high intensity focused ultrasound mediated hyperthermia combined with temperature-sensitive liposomes: Computational modelling and preliminary in vivovalidation, Int. J. Hyperthermia., 28 (2012), 337-348. doi: 10.3109/02656736.2012.677930
|
[138]
|
A. Dubey, B. Vasu, O. Anwar Bég, R. S. R. Gorla, A. Kadir, Computational fluid dynamic simulation of two-fluid non-Newtonian nanohemodynamics through a diseased artery with a stenosis and aneurysm, Comput. Methods Biomech. Biomed. Eng., (2020).
|
[139]
|
A. Patronis, R. A. Richardson, S. Schmieschek, B. J. N. Wylie, R. W. Nash, P. V. Coveney, Modeling patient-specific magnetic drug targeting within the intracranial vasculature, Front. Physiol., 9 (2018).
|
[140]
|
M. Vidotto, D. Botnariuc, E. De Momi, D. Dini, A computational fluid dynamics approach to determine white matter permeability, Biomech. Model. Mechanobiol., 18 (2019), 1111-1122. doi: 10.1007/s10237-019-01131-7
|
[141]
|
B. Uma, R. Radhakrishnan, D. M. Eckmann, P. S. Ayyaswamy, Nanocarrier-cell surface adhesive and hydrodynamic interactions: Ligand-receptor bond sensitivity study, J. Nanotechnol. Eng. Med., 3 (2012).
|
[142]
|
S. A. Irfan, A. Shafie, N. Yahya, N. Zainuddin, Mathematical modeling and simulation of nanoparticle-assisted enhanced oil recovery-A review, Energies, 12 (2019).
|
[143]
|
P. A. Taylor, A. Jayaraman, Molecular Modeling and Simulations of Peptide-Polymer Conjugates, Annu. Rev. Chem. Biomol. Eng., 11 (2020), 257-276.
|
[144]
|
J. Beik, M. Asadi, S. Khoei, S. Laurent, Z. Abed, M. Mirrahimi, et al., Simulation-guided photothermal therapy using MRI-traceable iron oxide-gold nanoparticle, J. Photochem. Photobiol. B, Biol., 199 (2019).
|
[145]
|
A. D. Martinac, N. Bavi, O. Bavi, B. Martinac, Pulling MscL open via N-terminal and TM1 helices: A computational study towards engineering an MscL nanovalve, PLoS ONE, 12 (2017).
|
[146]
|
J. Pearce, A. Giustini, R. Stigliano, P. J. Hoopes, Magnetic heating of nanoparticles: The importance of particle clustering to achieve therapeutic temperatures, J. Nanotechnol. Eng. Med., 4 (2013).
|
[147]
|
Abstracts of the 29th Annual Symposium of The Protein Society, Protein Sci., 24 (2015), 1-313.
|
[148]
|
A. Paul, N. K. Bandaru, A. Narasimhan, S. K. Das, Tumor ablation with near-infrared radiation using localized injection of nanoparticles, in: Proceedings of the 15th International Heat Transfer Conference, IHTC 2014, Begell House Inc., 2014.
|
[149]
|
Y. Li, Y. Lian, L. T. Zhang, S. M. Aldousari, H. S. Hedia, S. A. Asiri, et al., Cell and nanoparticle transport in tumour microvasculature: The role of size, shape and surface functionality of nanoparticles, Interface Focus., 6 (2016).
|
[150]
|
S. Ghosh, T. Das, S. Chakraborty, S. K. Das, Predicting DNA-mediated drug delivery in interior carcinoma using electromagnetically excited nanoparticles, Comput. Biol. Med., 41 (2011), 771-779. doi: 10.1016/j.compbiomed.2011.06.013
|
[151]
|
M. Mercado-M, A. M. Hernandez, J. C. Cruz, Permanent magnets to enable highly-targeted drug delivery applications: A computational and experimental study, in: IFMBE Proceedings, Springer Verlag, 2017,557-560.
|
[152]
|
M. Wabler, W. Zhu, M. Hedayati, A. Attaluri, H. Zhou, J. Mihalic, et al., Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content, Int. J. Hyperthermia., 30 (2014), 192-200. doi: 10.3109/02656736.2014.913321
|
[153]
|
H. Jahangirian, K. Kalantari, Z. Izadiyan, R. Rafiee-Moghaddam, K. Shameli, T. J. Webster, A review of small molecules and drug delivery applications using gold and iron nanoparticles, Int. J. Nanomed., 14 (2019), 1633-1657. doi: 10.2147/IJN.S184723
|
[154]
|
B.D. Kevadiya, B. M. Ottemann, M. Ben Thomas, I. Mukadam, S. Nigam, J. E. McMillan, et al., Neurotheranostics as personalized medicines, Adv. Drug Deliv. Rev., 148 (2019), 252-289.
|
[155]
|
S. Mannucci, S. Tambalo, G. Conti, L. Ghin, A. Milanese, A. Carboncino, et al., Magnetosomes Extracted from Magnetospirillum gryphiswaldense as Theranostic Agents in an Experimental Model of Glioblastoma, Contrast. Media Mol. Imaging., 2018 (2018).
|
[156]
|
J. Naghipoor, N. Jafary, T. Rabczuk, Mathematical and computational modeling of drug release from an ocular iontophoretic drug delivery device, Int. J. Heat Mass Transf., 123 (2018), 1035-1049. doi: 10.1016/j.ijheatmasstransfer.2018.03.021
|