Research article Special Issues

Investigating two kinds of cellular alternans and corresponding TWA induced by impaired calcium cycling in myocardial ischemia


  • Received: 29 May 2021 Accepted: 26 August 2021 Published: 06 September 2021
  • Background 

    The utility of T wave alternans (TWA) in identifying arrhythmia risk has been demonstrated. During myocardial ischemia (MI), TWA could be induced by cellular alternans. However, the relationship between cellular alternans patterns and TWA patterns in MI has not been investigated thoroughly.

    Methods 

    We set MI conditions to simulate alternans. Either prolonging Ca2+ release or increasing spark-induced sparks (secondary sparks) can give rise to different patterns of APD alternans and TWA. In addition, different ischemic zones and reduced conduction velocity are also considered in one dimensional simulation.

    Results 

    Delay of Ca2+ release can produce discordant Ca2+-driven alternans in single cell simulation. Increasing secondary sparks leads to concordant alternans. Correspondingly, morphology and magnitude of TWA vary in two different cellular alternans. Epi ischemia results in alternans concentrating in the first half of T wave. Endo and transmural ischemia lead to fluctuations in the second half of T wave. In addition, slowing conduction velocity has no effect on TWA magnitude.

    Conclusion 

    Specific ionic channel dysfunction and ischemic zones affect TWA patterns.

    Citation: Jiaqi Liu, Zhenyin Fu, Yinglan Gong, Ling Xia. Investigating two kinds of cellular alternans and corresponding TWA induced by impaired calcium cycling in myocardial ischemia[J]. Mathematical Biosciences and Engineering, 2021, 18(6): 7648-7665. doi: 10.3934/mbe.2021379

    Related Papers:

  • Background 

    The utility of T wave alternans (TWA) in identifying arrhythmia risk has been demonstrated. During myocardial ischemia (MI), TWA could be induced by cellular alternans. However, the relationship between cellular alternans patterns and TWA patterns in MI has not been investigated thoroughly.

    Methods 

    We set MI conditions to simulate alternans. Either prolonging Ca2+ release or increasing spark-induced sparks (secondary sparks) can give rise to different patterns of APD alternans and TWA. In addition, different ischemic zones and reduced conduction velocity are also considered in one dimensional simulation.

    Results 

    Delay of Ca2+ release can produce discordant Ca2+-driven alternans in single cell simulation. Increasing secondary sparks leads to concordant alternans. Correspondingly, morphology and magnitude of TWA vary in two different cellular alternans. Epi ischemia results in alternans concentrating in the first half of T wave. Endo and transmural ischemia lead to fluctuations in the second half of T wave. In addition, slowing conduction velocity has no effect on TWA magnitude.

    Conclusion 

    Specific ionic channel dysfunction and ischemic zones affect TWA patterns.



    加载中


    [1] R. L. Verrier, B. D. Nearing, Electrophysiologic Basis for T Wave Alternans as an Index of Vulnerability to Ventricular Fibrillation, J. Cardiovasc. Electrophysiol., 5 (2010), 445-461.
    [2] V. Lakireddy, P. Baweja, A. Syed, G. Bub, M. Boutjdir, N. E. Sherif, Contrasting effects of ischemia on the kinetics of membrane voltage and intracellular calcium transient underlie electrical alternans, Am. J. Physiol. Heart Circ. Physiol., 288 (2005), H400-H407. doi: 10.1152/ajpheart.00502.2004
    [3] B. Surawicz, C. Fisch, Cardiac alternans: diverse mechanisms and clinical manifestations, J. Am. Coll. Cardiol., 20 (1992), 483-499. doi: 10.1016/0735-1097(92)90122-4
    [4] M. U. Somuncu, H. Karakurt, Cardiac mortality predictability of T-wave alternans in young ST-elevated myocardial infarction patients with preserved cardiac function, Turk Kardiyol Dern Ars, 47 (2019), 449-457.
    [5] J. P. Martínez, S. Olmos, G. Wagner, P. Laguna, Characterization of repolarization alternans during ischemia: time-course and spatial analysis, IEEE Trans. Biomed. Eng., 53 (2006), 701-711. doi: 10.1109/TBME.2006.870233
    [6] Y. Wu, W. T. Clusin, Calcium transient alternans in blood-perfused ischemic hearts: observations with fluorescent indicator fura red, Am. J. Physiol. Heart Circ. Physiol., 273 (1997), H2161-H2169. doi: 10.1152/ajpheart.1997.273.5.H2161
    [7] Y. Qian, W. T. Clusin, S. F. Lin, J. Han, R. J. Song, Spatial heterogeneity of calcium transient alternans during the early phase of myocardial ischemia in the blood-perfused rabbit heart, Circulation, 104 (2001), 2082-2087. doi: 10.1161/hc4201.097136
    [8] J. Hüser, Y. Wang, K. A. Sheehan, F. Cifuentes, S. L. Lipsius, L. A. Blatter, Functional coupling between glycolysis and excitation-contraction coupling underlies alternans in cat heart cells, J. Physiol., 524 (2000), 795-806. doi: 10.1111/j.1469-7793.2000.00795.x
    [9] J. N. Edwards, L. A. Blatter, Cardiac alternans and intracellular calcium cycling, Clin. Exp. Pharmacol. Physiol., 41 (2014), 524-532. doi: 10.1111/1440-1681.12231
    [10] H. Hering, Das wesen des herzalternans, Munch Med. Wochenschr, 4 (1908), 1417-1421.
    [11] R. L. Verrier, K. Kumar, B. D. Nearing, Basis for sudden cardiac death prediction by T-wave alternans from an integrative physiology perspective, Heart Rhythm, 6 (2009), 416-422. doi: 10.1016/j.hrthm.2008.11.019
    [12] T. Nieminen, R. L. Verrier, Usefulness of T-wave alternans in sudden death risk stratification and guiding medical therapy, Ann. Noninvasive Electrocardiol., 15 (2010), 276-288. doi: 10.1111/j.1542-474X.2010.00376.x
    [13] S. M. Narayan, T-wave alternans and the susceptibility to ventricular arrhythmias, J. Am. Coll. Cardiol., 47 (2006), 269-281. doi: 10.1016/j.jacc.2005.08.066
    [14] M. L. Walker, D. S. Rosenbaum, Cellular alternans as mechanism of cardiac arrhythmogenesis, Heart Rhythm, 2 (2005), 1383-1386. doi: 10.1016/j.hrthm.2005.09.009
    [15] J. N. Weiss, A. Karma, Y. Shiferaw, P. S. Chen, A. Garfinkel, Z. Qu, From pulsus to pulseless: the saga of cardiac alternans, Circ. Res., 98 (2006), 1244-1253. doi: 10.1161/01.RES.0000224540.97431.f0
    [16] M. A. Watanabe, F. H. Fenton, S. J. Evans, H. M. Hastings, A. Karma, Mechanisms for discordant alternans, J. Cardiovasc. Electrophysiol., 12 (2001), 196-206. doi: 10.1046/j.1540-8167.2001.00196.x
    [17] E. Downar, M. J. Janse, D. Durrer, The effect of acute coronary artery occlusion on subepicardial transmembrane potentials in the intact porcine heart, Circulation, 56 (1977), 217-224. doi: 10.1161/01.CIR.56.2.217
    [18] W. T. Clusin, Mechanisms of calcium transient and action potential alternans in cardiac cells and tissues, Am. J. Physiol. Heart Circ. Physiol., 294 (2008), H1-H10. doi: 10.1152/ajpheart.00802.2007
    [19] D. Sato, D. M. Bers, Y. Shiferaw, Formation of spatially discordant alternans due to fluctuations and diffusion of calcium, PloS one, 8 (2013), e85365.
    [20] E. Chudin, J. Goldhaber, A. Garfinkel, J. Weiss, B. Kogan, Intracellular Ca2+ dynamics and the stability of ventricular tachycardia, Biophys. J., 77 (1999), 2930-2941. doi: 10.1016/S0006-3495(99)77126-2
    [21] Y. Shiferaw, D. Sato, A. Karma, Coupled dynamics of voltage and calcium in paced cardiac cells, Phys. Rev. E, 71 (2005), 021903. doi: 10.1103/PhysRevE.71.021903
    [22] D. Janusek, J. Svehlikova, J. Zelinka, W. Weigl, R. Zaczek, G. Opolski, et al., The roles of mid-myocardial and epicardial cells in T-wave alternans development: a simulation study, Biomed. Eng. online, 17 (2018), 1-21. doi: 10.1186/s12938-017-0432-x
    [23] D. Sato, Y. Shiferaw, A. Garfinkel, J. N. Weiss, Z. Qu, A. Karma, Spatially discordant alternans in cardiac tissue: role of calcium cycling, Circ. Res., 99 (2006), 520-527. doi: 10.1161/01.RES.0000240542.03986.e7
    [24] Y. Zang, L. Xia, Cellular mechanism of cardiac alternans: an unresolved chicken or egg problem, J. Zhejiang Univ. Sci. B, 15 (2014), 201-211. doi: 10.1631/jzus.B1300177
    [25] G. Kanaporis, L. A. Blatter, The mechanisms of calcium cycling and action potential dynamics in cardiac alternans, Circ. Res., 116 (2015), 846-856. doi: 10.1161/CIRCRESAHA.116.305404
    [26] G. Kanaporis, L. A. Blatter, Membrane potential determines calcium alternans through modulation of SR Ca2+ load and L-type Ca2+ current, J. Mol. Cell. Cardiol., 105 (2017), 49-58. doi: 10.1016/j.yjmcc.2017.02.004
    [27] X. Wan, M. Cutler, Z. Song, A. Karma, T. Matsuda, A. Baba, et al., New experimental evidence for mechanism of arrhythmogenic membrane potential alternans based on balance of electrogenic INCX/ICa currents, Heart Rhythm, 9 (2012), 1698-1705. doi: 10.1016/j.hrthm.2012.06.031
    [28] S. Thakare, J. Mathew, S. Zlochiver, X. Zhao, E. G. Tolkacheva, Global vs local control of cardiac alternans in a 1D numerical model of human ventricular tissue, Chaos, 30 (8), 083123.
    [29] E. M. Cherry, Distinguishing mechanisms for alternans in cardiac cells using constant-diastolic-interval pacing, Chaos, 27 (2017), p.093902.
    [30] L. D. Szymanowicz, D. Kaufmann, K. Rozwadowska, M. Kempa, E. Lewicka, G. Raczak, Microvolt T-wave alternans and autonomic nervous system parameters can be helpful in the identification of low-arrhythmic risk patients with ischemic left ventricular systolic dysfunction, PloS One, 13 (2018), e0196812. doi: 10.1371/journal.pone.0196812
    [31] W. Ichiro, Effects of pinacidil on ST-T wave alternans during acute myocardial ischemia in the in-situ pig heart, J. Nihon Univ. Med. Assoc., 76 (2017), 273-279.
    [32] Y. Zang, L. Dai, H. Zhan, J. Dou, L. Xia, H. Zhang, Theoretical investigation of the mechanism of heart failure using a canine ventricular cell model: Especially the role of up-regulated CaMKⅡ and SR Ca2+ leak, J. Mol. Cell. Cardiol., 56 (2013), 34-43. doi: 10.1016/j.yjmcc.2012.11.020
    [33] J. M. Cordeiro, S. E. Howlett, G. R. Ferrier, Simulated ischaemia and reperfusion in isolated guinea pig ventricular myocytes, Cardiovasc. Res., 28 (1994), 1794-1802. doi: 10.1093/cvr/28.12.1794
    [34] P. Baumeister, T. A. Quinn, Altered calcium handling and ventricular arrhythmias in acute ischemia, Clin. Med. Insights: Cardiology, 10 (2016), CMC. S39706.
    [35] J. Liu, Y. Gao, Y. Gong, W. Xu, M. Jiang, L. Xia, One-dimensional simulation of alternating conduction under hyperkalaemic conditions, Comput. Cardiol., 2017 (2017), 1-4.
    [36] J. M. Ferrero, J. Sáiz, J. M. Ferrero, N. V. Thakor, Simulation of action potentials from metabolically impaired cardiac myocytes: role of ATP-sensitive K+ current, Circ. Res., 79 (1996), 208-221. doi: 10.1161/01.RES.79.2.208
    [37] K. Tran, N. P. Smith, D. S. Loiselle, E. J. Crampin, Athermodynamic model of the cardiac sarcoplasmic/endoplasmic Ca2+ (SERCA) pump, Biophys. J., 96 (2009), 2029-2042. doi: 10.1016/j.bpj.2008.11.045
    [38] Y. Deng, J. Zhao, J. Yao, Q. Tang, L. Zhang, H. Zhou, et al., Verapamil suppresses cardiac alternans and ventricular arrhythmias in acute myocardial ischemia via ryanodine receptor inhibition, Am. J. Transl. Res., 9 (2017), 2712-2722.
    [39] S. Kapur, J. A. Wasserstrom, J. E. Kelly, A. H. Kadish, G. L. Aistrup, Acidosis and ischemia increase cellular Ca2+ transient alternans and repolarization alternans susceptibility in the intact rat heart, Am. J. Physiol. Heart Circ. Physiol., 296 (2009), H1491-H1512. doi: 10.1152/ajpheart.00539.2008
    [40] B. D. Nearing, S. N. Oesterle, R. L. Verrier, Quantification of ischaemia induced vulnerability by precordial T wave alternans analysis in dog and human, Cardiovasc. Res., 28 (1994), 1440-1449. doi: 10.1093/cvr/28.9.1440
    [41] B. D. Nearing, A. Huang, R. L. Verrier, Dynamic tracking of cardiac vulnerability by complex demodulation of the T wave, Science, 252 (1991), 437-440. doi: 10.1126/science.252.5011.1367
    [42] T. O'Hara, L. Virág, A.Varró, Y. Rudy, Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation, PLoS Comput. Biol., 7 (2011), e1002061. doi: 10.1371/journal.pcbi.1002061
    [43] R. Rovetti, X. Cui, A. Garfinkel, J. N. Weiss, Z. Qu, Spark-induced sparks as a mechanism of intracellular calcium alternans in cardiac myocytes, Circ. Res., 106 (2010), 1582-1591. doi: 10.1161/CIRCRESAHA.109.213975
    [44] D. L. Carson, R. Cardinal, P. Savard, M. Vermeulen, Characterisation of unipolar waveform alternation in acutely ischaemic porcine myocardium, Cardiovasc. Res., 20 (1986), 521-527. doi: 10.1093/cvr/20.7.521
    [45] X. Zhong, B. Sun, A. Vallmitjana, T. Mi, W. Guo, M. Ni, et al., Suppression of ryanodine receptor function prolongs Ca2+ release refractoriness and promotes cardiac alternans in intact hearts, Biochem. J., 473 (2016), 3951-3964. doi: 10.1042/BCJ20160606
    [46] V. M. Shkryl, J. T. Maxwell, T. L. Domeier, L. A. Blatter, Refractoriness of sarcoplasmic reticulum Ca2+ release determines Ca2+ alternans in atrial myocytes, Am. J. Physiol. Heart Circ. Physiol., 302 (2012), H2310-H2320. doi: 10.1152/ajpheart.00079.2012
    [47] M. E. Díaz, S. C. O'Neill, D. A. Eisner, Sarcoplasmic reticulum calcium content fluctuation is the key to cardiac alternans, Circ. Res., 94 (2004), 650-656. doi: 10.1161/01.RES.0000119923.64774.72
    [48] Y. Li, M. E. Díaz, D. A. Eisner, S. O'Neill, The effects of membrane potential, SR Ca2+ content and RyR responsiveness on systolic Ca2+ alternans in rat ventricular myocytes, J. Physiol., 587 (2009), 1283-1292. doi: 10.1113/jphysiol.2008.164368
    [49] B. A. Cameron, K. Hiroaki, K. Kaihara, G. Iribe, T. A. Quinn, Ischemia enhances the acute stretch-induced increase in calcium spark rate in ventricular myocytes, Front. Physiol., 11 (2020), 289-298.
    [50] J. Tomek, M. Tomková, X. Zhou, G. Bub, B. Roderiguez, Modulation of cardiac alternans by altered sarcoplasmic reticulum calcium release: a simulation study, Front. Physiol., 9 (2018), 1306-1320.
    [51] H. C. Lee, R. Mohabir, N. Smith, M. R. Franz, W. T. Clusin, Effect of ischemia on calcium-dependent fluorescence transients in rabbit hearts containing indo 1. Correlation with monophasic action potentials and contraction, Circulation, 78 (1988), 1047-1059. doi: 10.1161/01.CIR.78.4.1047
    [52] R. Tupling, H. Green, G. Senisterra, J. Lepock, N. McKee, Effects of ischemia on sarcoplasmic reticulum Ca2+ uptake and Ca2+ release in rat skeletal muscle, Am. J. Physiol. Endocrinol. Metab., 281 (2001), E224-E232. doi: 10.1152/ajpendo.2001.281.2.E224
    [53] P. K. Stein, D. Sanghavi, P. P. Domitrovich, R. A. Mackey, P. Deedwania, Ambulatory ECG based T-wave alternans predicts sudden cardiac death in high risk post MI patients with left ventricular dysfunction in the EPHESUS study, J. Cardiovasc. Electrophysiol., 19 (2008), 1037-1042. doi: 10.1111/j.1540-8167.2008.01225.x
    [54] T. Konta, K. Ikeda, M. Yamaki, K. Nakamura, K. Honma, I. Kubota, et al., Significance of discordant ST alternans in ventricular fibrillation, Circulation, 82 (1990), 2185-2189. doi: 10.1161/01.CIR.82.6.2185
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2500) PDF downloads(71) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog