We study a spatial susceptible-infected-susceptible(SIS) model in heterogeneous environments with vary advective rate. We establish the asymptotic stability of the unique disease-free equilibrium(DFE) when $ \mathcal{R}_0 < 1 $ and the existence of the endemic equilibrium when $ \mathcal{R}_0 > 1 $. Here $ \mathcal{R}_0 $ is the basic reproduction number. We also discuss the effect of diffusion on the stability of the DFE.
Citation: Xiaowei An, Xianfa Song. A spatial SIS model in heterogeneous environments with vary advective rate[J]. Mathematical Biosciences and Engineering, 2021, 18(5): 5449-5477. doi: 10.3934/mbe.2021276
We study a spatial susceptible-infected-susceptible(SIS) model in heterogeneous environments with vary advective rate. We establish the asymptotic stability of the unique disease-free equilibrium(DFE) when $ \mathcal{R}_0 < 1 $ and the existence of the endemic equilibrium when $ \mathcal{R}_0 > 1 $. Here $ \mathcal{R}_0 $ is the basic reproduction number. We also discuss the effect of diffusion on the stability of the DFE.
[1] | L. J. S. Allen, B. M. Bolker, Y. Lou, A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic patch model, SIAM J. Appl. Math., 67 (2007), 1283–1309. doi: 10.1137/060672522 |
[2] | L. J. S. Allen, B. M. Bolker, Y. Lou, A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction–diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1–20. doi: 10.3934/dcds.2008.21.1 |
[3] | R. H. Cui, K. Y. Lam, Y. Lou, Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments, J. Differ. Equations, 263 (2017), 2343–2373. doi: 10.1016/j.jde.2017.03.045 |
[4] | J. Ge, K. I. Kim, Z. G. Lin, H. P. Zhu, A SIS reaction–diffusion–advection model in a low–risk and high–risk domain, J. Differ. Equations, 259 (2015), 5486–5509. doi: 10.1016/j.jde.2015.06.035 |
[5] | W. Z. Huang, M. A. Han, K. Y. Liu, Dynamics of an SIS reaction–diffusion epidemic model for disease transmission, Math. Biosci. Eng., 7 (2010), 51–66. doi: 10.3934/mbe.2010.7.51 |
[6] | K. Kuto, H. Matsuzawa, R. Peng, Concentration profile of endemic equilibrium of a reaction–diffusion–advection SIS epidemic model, Calc. Var. Partial Differential Equations, 56 (2017), Paper No. 112, 28 pp. |
[7] | H. C. Li, R. Peng, F. B. Wang, Varying total population enhances disease persistence: qualitative analysis on a diffusive SIS epidemic model, J. Differ. Equations, 262 (2017), 885–913. doi: 10.1016/j.jde.2016.09.044 |
[8] | R. Peng, Asymptotic profiles of the positive steady state for an SIS epidemic reaction–diffusion model. I, J. Differ. Equations, 247 (2009), 1096–1119. doi: 10.1016/j.jde.2009.05.002 |
[9] | R. Peng, S. Q. Liu, Global stability of the steady states of an SIS epidemic reaction–diffusion model, Nonlinear Anal., 71 (2009), 239–247. doi: 10.1016/j.na.2008.10.043 |
[10] | R. Peng, F. Q. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reaction–diffusion model: effects of epidemic risk and population movement, Phys. D, 259 (2013), 8–25. doi: 10.1016/j.physd.2013.05.006 |
[11] | R. Peng, X. Q. Zhao, A reaction–diffusion SIS epidemic model in a time–periodic environment, Nonlinearity, 25 (2012), 1451–1471. doi: 10.1088/0951-7715/25/5/1451 |
[12] | W. Wang, W. Ma, Z. Feng, Global dynamics and traveling waves for a periodic and diffusive chemostat model with two nutrients and one microorganism, Nonlinearity, 33 (2020), 4338–4380. doi: 10.1088/1361-6544/ab86ca |
[13] | X. Q. Zhao, Dynamical systems in population biology $2^{nd}$ edition. CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC. Springer, Cham, 2017. xv+413 pp. ISBN: 978-3-319-56432-6; 978-3-319-56433-3. |
[14] | R. H. Cui, Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differ. Equations, 261 (2016), 3305–3343. doi: 10.1016/j.jde.2016.05.025 |
[15] | D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol.840, Springer-Verlag, Berlin-New York, 1981. |
[16] | O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. |
[17] | P. van den Driessche, J. Watmough, Reproduction numbers and sub–threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. doi: 10.1016/S0025-5564(02)00108-6 |
[18] | W. D. Wang, X. Q. Zhao, Basic reproduction numbers for reaction–diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652–1673. doi: 10.1137/120872942 |
[19] | H. L. Smith, Monotone Dynamical Systems, Mathematical Surveys and Monographs, vol.41, American Mathemat-ical Society, Providence, RI, 1995. |
[20] | M. G. Crandall, P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321–340. doi: 10.1016/0022-1236(71)90015-2 |
[21] | Y. H. Du, J. P. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model, Trans. Amer. Math. Soc., 359 (2007), 4557–4593. doi: 10.1090/S0002-9947-07-04262-6 |
[22] | J. P. Shi, Persistence and bifurcation of degenerate solutions, J. Funct. Anal., 169 (1999), 494–531. doi: 10.1006/jfan.1999.3483 |
[23] | J. P. Shi, X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differ. Equations, 246 (2009), 2788–2812. doi: 10.1016/j.jde.2008.09.009 |
[24] | P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487–513. doi: 10.1016/0022-1236(71)90030-9 |
[25] | D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2$^{nd}$ edition, Springer-Verlag, Berlin, 1983. |
[26] | C. S. Lin, W. M. Ni, I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differ. Equations, 72 (1988), 1–27. doi: 10.1016/0022-0396(88)90147-7 |
[27] | Y. Lou, W. M. Ni, Diffusion, self–diffusion and cross–diffusion, J. Differ. Equations, 131 (1996), 79–131. doi: 10.1006/jdeq.1996.0157 |
[28] | L. Nirenberg, Topics in Nonlinear Functional Analysis, New York University, Courant Institute of Mathematical Sciences/American Mathematical Society, New York/Providence, RI, 2001. |