Research article Special Issues

A dynamically-consistent nonstandard finite difference scheme for the SICA model

  • Received: 23 March 2021 Accepted: 20 May 2021 Published: 26 May 2021
  • In this work, we derive a nonstandard finite difference scheme for the SICA (Susceptible–Infected–Chronic–AIDS) model and analyze the dynamical properties of the discretized system. We prove that the discretized model is dynamically consistent with the continuous, maintaining the essential properties of the standard SICA model, namely, the positivity and boundedness of the solutions, equilibrium points, and their local and global stability.

    Citation: Sandra Vaz, Delfim F. M. Torres. A dynamically-consistent nonstandard finite difference scheme for the SICA model[J]. Mathematical Biosciences and Engineering, 2021, 18(4): 4552-4571. doi: 10.3934/mbe.2021231

    Related Papers:

  • In this work, we derive a nonstandard finite difference scheme for the SICA (Susceptible–Infected–Chronic–AIDS) model and analyze the dynamical properties of the discretized system. We prove that the discretized model is dynamically consistent with the continuous, maintaining the essential properties of the standard SICA model, namely, the positivity and boundedness of the solutions, equilibrium points, and their local and global stability.



    加载中


    [1] S. M. Salman, A nonstandard finite difference scheme and optimal control for an HIV model with Beddington-DeAngelis incidence and cure rate, Eur. Phys. J. Plus, 135 (2020), 1–23. doi: 10.1140/epjp/s13360-019-00059-2
    [2] S. M. Salman, Memory and media coverage effect on an HIV/AIDS epidemic model with treatment, J. Comput. Appl. Math., 385 (2021), 113203. doi: 10.1016/j.cam.2020.113203
    [3] A. M. Elaiw, M. A. Alshaikh, Global stability of discrete virus dynamics models with humoural immunity and latency, J. Biol. Dyn., 13 (2019), 639–674. doi: 10.1080/17513758.2019.1683630
    [4] C. J. Silva, D. F. M. Torres, A TB-HIV/AIDS coinfection model and optimal control treatment, Discrete Contin. Dyn. Syst., 35 (2015), 4639–4663. doi: 10.3934/dcds.2015.35.4639
    [5] C. J. Silva, D. F. M. Torres, On SICA Models for HIV Transmission, in Mathematical Modelling and Analysis of Infectious Diseases, Studies in Systems, Decision and Control 302, Springer Nature Switzerland AG, (2020), 155–179.
    [6] C. J. Silva, D. F. M. Torres, A SICA compartmental model in epidemiology with application to HIV/AIDS in Cape Verde, Ecol. Complexity, 30 (2017), 70–75. doi: 10.1016/j.ecocom.2016.12.001
    [7] J. Djordjevic, C. J. Silva, D. F. M. Torres, A stochastic SICA epidemic model for HIV transmission, Appl. Math. Lett., 84 (2018), 168–175. doi: 10.1016/j.aml.2018.05.005
    [8] A. Boukhouima, E. M. Lotfi, M. Mahrouf, S. Rosa, D. F. M. Torres, N. Yousfi, Stability analysis and optimal control of a fractional HIV-AIDS epidemic model with memory and general incidence rate, Eur. Phys. J. Plus, 136 (2021), 1–20. doi: 10.1140/epjp/s13360-020-01001-7
    [9] M. Bohner, S. Streipert, D. F. M. Torres, Exact solution to a dynamic SIR model, Nonlinear Anal. Hybrid Syst., 32 (2019), 228–238. doi: 10.1016/j.nahs.2018.12.005
    [10] C. Campos, C. J. Silva, D. F. M. Torres, Numerical optimal control of HIV transmission in Octave/MATLAB, Math. Comput. Appl., 25 (2020), 20.
    [11] S. Nemati, D. F. M. Torres, A new spectral method based on two classes of hat functions for solving systems of fractional differential equations and an application to respiratory syncytial virus infection, Soft Comput., 25 (2021), 6745–6757. doi: 10.1007/s00500-019-04645-5
    [12] A. M. Stuart, A. R. Humphries, Dynamical Systems and Numerical Analysis, Cambridge University Press, New York, 1996.
    [13] R. E. Mickens, Nonstandard finite difference models of differential equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1994.
    [14] R. E. Mickens, Nonstandard finite difference schemes for differential equations, J. Difference Equation Appl., 8 (2002), 823–847. doi: 10.1080/1023619021000000807
    [15] S. M. Garba, A. B. Gumel, J. M-S. Lubuma, Dynamically-consistent non-standard finite difference method for an epidemic model, Math. Comput. Modelling, 53 (2011), 131–150. doi: 10.1016/j.mcm.2010.07.026
    [16] S. Liao, W. Yang, A nonstandard finite difference method applied to a mathematical cholera model, Bull. Korean Math. Soc., 54 (2017), 1893–1912.
    [17] R. E. Mickens, Dynamic consistency: a fundamental principle for constructing nonstandard finite difference schemes for differential equations, J. Difference Equation Appl., 11 (2005), 645–653. doi: 10.1080/10236190412331334527
    [18] A. K. Verma, S. Kayenat, An efficient Mickens' type NSFD scheme for the generalized Burgers Huxley equation, J. Difference Equation Appl., 26 (2020), 1213–1246. doi: 10.1080/10236198.2020.1812594
    [19] A. K. Verma, S. Kayenat, Applications of modified Mickens-type NSFD schemes to Lane-Emden equations, Comput. Appl. Math., 39 (2020), 1–25. doi: 10.1007/s40314-019-0964-8
    [20] R. Anguelov, T. Berge, M. Chapwanya, J. K. Djoko, P. Kama, J. M. S. Lubuma, et al., Nonstandard finite difference method revisited and application to the Ebola virus disease transmission dynamics, J. Difference Equation Appl., 26 (2020), 818–854. doi: 10.1080/10236198.2020.1792892
    [21] R. Anguelov, Y. Dumont, J. M. S. Lubuma, M. Shillor, Dynamically consistent nonstandard finite difference schemes for epidemiological models, J. Comput. Appl. Math., 255 (2014), 161–182. doi: 10.1016/j.cam.2013.04.042
    [22] D. T. Wood, H. V. Kojouharov, D. T. Dimitrov, Universal approaches to approximate biological systems with nonstandard finite difference methods, Math. Comput. Simul., 133 (2017), 337–350. doi: 10.1016/j.matcom.2016.04.007
    [23] D. T. Wood, D. T. Dimitrov, H. V. Kojouharov, A nonstandard finite difference method for $n$-dimensional productive-destructive systems, J. Difference Equation Appl., 21 (2015), 240–254. doi: 10.1080/10236198.2014.997228
    [24] D. T. Dimitrov, H. V. Kojouharov, Dynamically consistent numerical methods for general productive-destructive systems, J. Difference Equation Appl., 17 (2011), 1721–1736. doi: 10.1080/10236191003781947
    [25] D. T. Dimitrov, H. V. Kojouharov, Nonstandard numerical methods for a class of predator-prey models with predator interference, Electron. J. Differ. Equation Conf., 15 (2007), 67–75.
    [26] S. Elaydi, An Introduction to Difference Equations, third edition, Springer, New York, 2005.
    [27] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), 29–48.
    [28] R. E. Mickens, Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition, Numer. Methods Partial Differential Equations 23 (2007), 672–691.
    [29] R. E. Mickens, T. M. Washington, NSFD discretization of interacting population models satisfying conservation laws, Comput. Math. Appl., 66 (2013), 2307–2316. doi: 10.1016/j.camwa.2013.06.011
    [30] D. T. Dimitrov, H. V. Kojouharov, Positive and elementary stable nonstandard numerical methods with applications to predator-prey models, J. Comput. Appl. Math., 189 (2006), 98–108. doi: 10.1016/j.cam.2005.04.003
    [31] L. J. S. Allen, P. van den Driessche, The basic reproduction number in some discrete-time epidemic models, J. Difference Equation Appl., 14 (2008), 1127–1147. doi: 10.1080/10236190802332308
    [32] República de Cabo Verde, Rapport de Progrès sur la riposte au SIDA au Cabo Verde-2015, Comité de Coordenação do Combate à SIDA (2015).
    [33] World Bank Data, World Development Indicators, Available from: http://data.worldbank.org/country/cape-verde.
    [34] O. Sharomi, C. N. Podder, A. B. Gumel, B. Song, Mathematical analysis of the transmission dynamics of HIV/TB confection in the presence of treatment, Math. Biosci. Eng., 5 (2008), 145–174. doi: 10.3934/mbe.2008.5.145
    [35] C. P. Bhunu, W. Garira, Z. Mukandavire, Modeling HIV/AIDS and tuberculosis coinfection, Bull. Math. Biol., 71 (2009), 1745–1780. doi: 10.1007/s11538-009-9423-9
    [36] A. S. Perelson, P. Essunger, Y. Cao, M. Vesanen, A. Hurley, K. Saksela, et al., Decay characteristics of HIV-1-infected compartments during combination therapy, Nature, 387, (1997), 188–191.
    [37] M. Zahlen, M. Egger, Progression and mortality of untreated HIV-positive individuals living in resources-limited settings: Update of literature review and evidence synthesis, Report on UNAIDS obligation no. HQ/05/422204 (2006).
    [38] World Bank Data, Population, total–Cabo Verde, Available from: http://data.worldbank.org/indicator/SP.POP.TOTL?locations=CV.
    [39] M. S. Cohen, Y. Q. Chen, M. McCauley, et al., Prevention of HIV-1 infection with early antiretroviral therapy, N. Engl. J. Med, 365 (2011), 493–505. doi: 10.1056/NEJMoa1105243
    [40] J. Del Romero, Natural conception in HIV-serodiscordant couples with the infected partner in suppressive antiretroviral therapy: A prospective cohort study, Medicine, 95 (2016), e4398. doi: 10.1097/MD.0000000000004398
    [41] D. P. Wilson, M. G. Law, A. E. Grulich, D. A. Cooper, J. M. Kaldor, Relation between HIV viral load and infectiousness: a model based analysis, Lancet, 372 (2008), 314–320. doi: 10.1016/S0140-6736(08)61115-0
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2767) PDF downloads(166) Cited by(6)

Article outline

Figures and Tables

Figures(2)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog