Research article Special Issues

Insights into protease sequence similarities by comparing substrate sequences and phylogenetic dynamics

  • Received: 10 October 2020 Accepted: 21 December 2020 Published: 25 December 2020
  • Based on substrate sequences, we proposed a novel method for comparing sequence similarities among 68 proteases compiled from the MEROPS online database. The rank vector was defined based on the frequencies of amino acids at each site of the substrate, aiming to eliminate the different order variances of magnitude between proteases. Without any assumption on homology, a protease specificity tree is constructed with a striking clustering of proteases from different evolutionary origins and catalytic types. Compared with other methods, almost all the homologous proteases are clustered in small branches in our phylogenetic tree, and the proteases belonging to the same catalytic type are also clustered together, which may reflect the genetic relationship among the proteases. Meanwhile, certain proteases clustered together may play a similar role in key pathways categorized using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Consequently, this method can provide new insights into the shared similarities among proteases. This may inspire the design and development of targeted drugs that can specifically regulate protease activity.

    Citation: Enfeng Qi, Can Fu, Ying Zhai, Jianghui Dong. Insights into protease sequence similarities by comparing substrate sequences and phylogenetic dynamics[J]. Mathematical Biosciences and Engineering, 2021, 18(1): 837-850. doi: 10.3934/mbe.2021044

    Related Papers:

  • Based on substrate sequences, we proposed a novel method for comparing sequence similarities among 68 proteases compiled from the MEROPS online database. The rank vector was defined based on the frequencies of amino acids at each site of the substrate, aiming to eliminate the different order variances of magnitude between proteases. Without any assumption on homology, a protease specificity tree is constructed with a striking clustering of proteases from different evolutionary origins and catalytic types. Compared with other methods, almost all the homologous proteases are clustered in small branches in our phylogenetic tree, and the proteases belonging to the same catalytic type are also clustered together, which may reflect the genetic relationship among the proteases. Meanwhile, certain proteases clustered together may play a similar role in key pathways categorized using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Consequently, this method can provide new insights into the shared similarities among proteases. This may inspire the design and development of targeted drugs that can specifically regulate protease activity.


    加载中


    [1] N. D. Rawlings, F. R. Morton, C. Y. Kok, J. Kong, A. J. Barrett, MEROPS: The peptidase database, Nucleic Acids Res., 36 (2008), 320-325. doi: 10.1093/nar/gkn292
    [2] B. Turk, Targeting proteases: Successes, failures and future prospects, Nat. Rev. Drug Discovery, 5 (2006), 785-799. doi: 10.1038/nrd2092
    [3] M. Egeblad, Z. Werb, New functions for the matrix metalloproteinases in cancer progression, Nat. Rev. Cancer, 2 (2002), 161-174. doi: 10.1038/nrc745
    [4] K. Nabeshima, T. Inoue, Y. Shimao, T. Sameshima, Matrix metalloproteinases in tumor invasion: Role for cell migration, Pathol. Int., 52 (2002), 255-264. doi: 10.1046/j.1440-1827.2002.01343.x
    [5] A. C. Newby, Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates, Cardiovascul. Res., 69 (2006), 614-624. doi: 10.1016/j.cardiores.2005.08.002
    [6] R. Palmisano, Y. Itoh, Analysis of MMP-dependent cell migration and invasion, Methods Molecul. Biol., 622 (2010), 379-392. doi: 10.1007/978-1-60327-299-5_23
    [7] A. Page-McCaw, A. J. Ewald, Z. Werb, Matrix metalloproteinases and the regulation of tissue remodelling, Nat. Rev. Molecul. Cell Biol., 8 (2007), 221-233.
    [8] O. Julien, J. A. Wells, Caspases and their substrates, Cell Death Diff., 24 (2017), 1380-1389. doi: 10.1038/cdd.2017.44
    [9] X. L. Li, P. Wang, Y. Xie, Protease nexin-1 protects against Alzheimer's disease by regulating the sonic hedgehog signaling pathway, Int. J. Neurosci., (2020), 1-10.
    [10] M. A. Slack, S. M. Gordon, Protease activity in vascular disease, Arterioscler. Thromb. Vascul. Biol., 39 (2019), 210-218.
    [11] C. Tomuschat, A. M. O'Donnell, D. Coyle, P. Puri, Increased protease activated receptors in the colon of patients with Hirschsprung's disease, J. Pediatr. Surg., 55 (2020), 1488-1494. doi: 10.1016/j.jpedsurg.2019.11.009
    [12] L. J. Visser, G. N. Medina, H. H. Rabouw, R. J. de Groot, M. A. Langereis, T. de Los Santos, et al., Foot-and-mouth disease virus leader protease cleaves G3BP1 and G3BP2 and inhibits stress granule formation, J. Virol., 93 (2019), 922-918.
    [13] K. Ożegowska, J. Bartkowiak-Wieczorek, A. Bogacz, A. Seremak-Mrozikiewicz, A. J. Duleba, L. Pawelczyk, Relationship between adipocytokines and angiotensin converting enzyme gene insertion/deletion polymorphism in lean women with and without polycystic ovary syndrome, Gynecol. Endocrinology.: Off. J. Int. Soc. Gynecol. Endocrinol., 36 (2020), 496-500. doi: 10.1080/09513590.2019.1695248
    [14] X. S. Ren, Y. Tong, Y. Qiu, C. Ye, N. Wu, X.Q. Xiong, et al., MiR155-5p in adventitial fibroblasts-derived extracellular vesicles inhibits vascular smooth muscle cell proliferation via suppressing angiotensin-converting enzyme expression, J. Extracell. Vesicles, 9 (2020), 1698795. doi: 10.1080/20013078.2019.1698795
    [15] I. Schechter, A. Berger, On the size of the active site in proteases. I. Papain. 1967, Biochem. Biophys. Res. Commun., 425 (2012), 497-502. doi: 10.1016/j.bbrc.2012.08.015
    [16] P. Van Damme, A. Staes, S. Bronsoms, K. Helsens, N. Colaert, E. Timmerman, et al., Complementary positional proteomics for screening substrates of endo and exoproteases, Nat. Methods, 7 (2010), 512-515. doi: 10.1038/nmeth.1469
    [17] O. Schilling, O. Barré, P. F. Huesgen, C. M. Overall, Proteome-wide analysis of protein carboxy termini: C terminomics, Nat. Methods, 7 (2010), 508-511. doi: 10.1038/nmeth.1467
    [18] P. Van Damme, S. Maurer-Stroh, K. Plasman, J. Van Durme, N. Colaert, E. Timmerman, et al., Analysis of protein processing by N-terminal proteomics reveals novel species-specific substrate determinants of granzyme B orthologs, Mol. Cell. Proteomics: MCP, 8 (2009), 258-272. doi: 10.1074/mcp.M800060-MCP200
    [19] S. Mahrus, J. C. Trinidad, D. T. Barkan, A. Sali, A. L. Burlingame, J. A. Wells, Global sequencing of proteolytic cleavage sites in apoptosis by specific labeling of protein N termini, Cell, 134 (2008), 866-876. doi: 10.1016/j.cell.2008.08.012
    [20] N. D. Rawlings, A. J. Barrett, R. Finn, Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors, Nucleic Acids Res., 44 (2016), 343-350. doi: 10.1093/nar/gkv1118
    [21] Y. Igarashi, A. Eroshkin, S. Gramatikova, K. Gramatikoff, Y. Zhang, J. W. Smith, et al., CutDB: A proteolytic event database, Nucleic Acids Res., 35 (2007), 546-549. doi: 10.1093/nar/gkl813
    [22] Y. Igarashi, E. Heureux, K. S. Doctor, P. Talwar, S. Gramatikova, K. Gramatikoff, et al., PMAP: Databases for analyzing proteolytic events and pathways, Nucleic Acids Res., 37 (2009), 611-618. doi: 10.1093/nar/gkn977
    [23] V. Quesada, G. R. Ordóñez, L. M. Sánchez, X. S. Puente, C. López-Otín, The Degradome database: Mammalian proteases and diseases of proteolysis, Nucleic Acids Res., 37 (2009), 239-243. doi: 10.1093/nar/gkn570
    [24] A. U. Lüthi, S. J. Martin, The CASBAH: A searchable database of caspase substrates, Cell Death Differ., 14 (2007), 641-650. doi: 10.1038/sj.cdd.4402103
    [25] K. K. Dey, D. Y. Xie, M. Stephens, A new sequence logo plot to highlight enrichment and depletion, Bmc Bioinf., 19 (2018), 1-9. doi: 10.1186/s12859-017-2006-0
    [26] G. E. Crooks, G. Hon, J. M. Chandonia, S. E. Brenner, WebLogo: A sequence logo generator, Genome Res., 14 (2004), 1188-1190. doi: 10.1101/gr.849004
    [27] N. Colaert, K. Helsens, L. Martens, J. L. Vandekerckhove, K. Gevaert, Improved visualization of protein consensus sequences by iceLogo, Nat. Methods, 6 (2009), 786-787. doi: 10.1038/nmeth1109-786
    [28] M. M. Dix, G.M. Simon, B. F. Cravatt, Global mapping of the topography and magnitude of proteolytic events in apoptosis, Cell, 134 (2008), 679-691. doi: 10.1016/j.cell.2008.06.038
    [29] J. E. Fuchs, S. von Grafenstein, R. G. Huber, M. A. Margreiter, G. M. Spitzer, H. G. Wallnoefer, et al., Cleavage entropy as quantitative measure of protease specificity, PLoS Comput. Biol., 9 (2013), 1003007. doi: 10.1371/journal.pcbi.1003007
    [30] J. E. Fuchs, S. von Grafenstein, R. G. Huber, C. Kramer, K. R. Liedl, Substrate-driven mapping of the degradome by comparison of sequence logos, PLoS Comput. Biol., 9 (2013), 1003353. doi: 10.1371/journal.pcbi.1003353
    [31] E. Qi, D. Wang, Y. Li, G. Li, Z. Su, Revealing favorable and unfavorable residues in cooperative positions in protease cleavage sites, Biochem. Biophys. Res. Commun., 519 (2019), 714-720. doi: 10.1016/j.bbrc.2019.09.056
    [32] E. F. Qi, D. Y. Wang, B. Gao, Y. Li, G. J. Li, Block-based characterization of protease specificity from substrate sequence profile, Bmc Bioinf., 18 (2017), 438. doi: 10.1186/s12859-017-1851-1
    [33] J. Song, H. Tan, A. J. Perry, T. Akutsu, G. I. Webb, J. C. Whisstock, et al., PROSPER: An integrated feature-based tool for predicting protease substrate cleavage sites, PloS one, 7 (2012), 50300. doi: 10.1371/journal.pone.0050300
    [34] J. Verspurten, K. Gevaert, W. Declercq, P. Vandenabeele, SitePredicting the cleavage of proteinase substrates, Trends Biochem. Sci., 34 (2009), 319-323. doi: 10.1016/j.tibs.2009.04.001
    [35] Z. Zhang, S. Schwartz, L. Wagner, W. Miller, A greedy algorithm for aligning DNA sequences, J. Comput. Biol.: J. Comput. Mol. Cell Biol., 7 (2000), 203-214. doi: 10.1089/10665270050081478
    [36] C. Spearman, The proof and measurement of association between two things, Am. J. Psychol., 100 (1987), 441-471. doi: 10.2307/1422689
    [37] I. Letunic, P. Bork, Interactive Tree Of Life v2: Online annotation and display of phylogenetic trees made easy, Nucleic Acids Res., 39 (2011), 475-478. doi: 10.1093/nar/gkq818
    [38] N. M. Ng, R. N. Pike, S. E. Boyd, Subsite cooperativity in protease specificity, Biol. Chem., 390 (2009), 401-407. doi: 10.1515/BC.2009.065
    [39] H. R. Stennicke, M. RENATUS, M. MELDAL, G. S. SALVESEN, Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8, Biochem. J., 350 (2000), 563-568. doi: 10.1042/bj3500563
    [40] Y. Choe, F. Leonetti, D. C. Greenbaum, F. Lecaille, M. Bogyo, D. Brömme, et al., Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities, J. Biol. Chem., 281 (2006), 12824-12832. doi: 10.1074/jbc.M513331200
    [41] S. Elamouri, H. Zhu, J. Yu, R. A. Marr, I. M. Verma, M. S. Kindy, Neprilysin: An enzyme candidate to slow the progression of Alzheimer's disease, Am. J. Pathol., 172 (2008), 1342-1354. doi: 10.2353/ajpath.2008.070620
    [42] M. Eguiluz, F. Kulcheski, R. Margis, F. Guzman, De novo assembly of vriesea carinata leaf transcriptome to identify candidate cysteine-proteases, Gene, 691 (2019), 96-105. doi: 10.1016/j.gene.2018.12.053
  • mbe-18-01-044-Table S1-supplementary.pdf
    mbe-18-01-044-Additional file 1- supplementary.xlsx
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2894) PDF downloads(178) Cited by(0)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog