Citation: Zairong Wang, Xuan Tang, Haohuai Liu, Lingxi Peng. Artificial immune intelligence-inspired dynamic real-time computer forensics model[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7221-7233. doi: 10.3934/mbe.2020370
[1] | L. Peng, Q. Zhang, Dynamically real-time computer forensics paradiam with immune, International Conference on Signal Processing (ICSP), 2014. |
[2] | L. Wang, H. Qian, Computer Forensics and Its Future Trend, J. Software, 14 (2003), 1635-1644. |
[3] | E. S. Pilli, R. C. Joshi, R. Niyogi, Network forensic frameworks: Survey and research challenges, Digital Invest., 7 (2010), 14-27. doi: 10.1016/j.diin.2010.02.003 |
[4] | J. Ding, X. Liu, T. Li, S. Yang, P. Yang, Dynamic Computer Forensics Based on Artificial Immune System Against Network Intrusion, J. Sichuan Univ. (Eng. Sci. Edition), 36 (2004), 108-111. |
[5] | H. Pi, Electronic data forensics in the age of Internet of everything, Chin. Inf. Secur., 5 (2019), 71-73. |
[6] | S. Hosseini, A. Jahangir, M. Kazemi, Digesting Network Traffic for Forensic Investigation Using Digital Signal Processing Techniques, IEEE Trans. Inf. Forensics Secur., 14 (2019), 3312-3321. doi: 10.1109/TIFS.2019.2915190 |
[7] | T. Abu, Testing closed source software: computer forensic tool case study, J. Comput. Virol. Hack. Tech., 14 (2018), 167-179. doi: 10.1007/s11416-017-0302-x |
[8] | M. Asim, D. R. Mckinnel, A. Dehghantanha, R. M. Parizi, G. Epiphaniou, Big data forensics: Hadoop distributed file systems as a case study, in Handbook of Big Data and IoT Security, Springer, (2019), 179-210. |
[9] | J. Park. Trede and VMPOP: Cultivating multi-purpose datasets for digital forensics - A Windows registry corpus as an example, Digit. Invest., 26 (2018), 3-18. |
[10] | Y. Teing, A. Dehghantanha, K. R. Choo, CloudMe forensics: A case of big data forensic investigation, Concurr. Comp-Pract. E., 30 (2017), 1-12. |
[11] | J. Zeng, X. Liu, T. Li, C. Liu, L. Peng, F. Sun, A self-adaptive negative selection algorithm used for anomaly detection, Prog. Nat. Sci., 19 (2009), 261-266. doi: 10.1016/j.pnsc.2008.06.008 |
[12] | L. Peng, D. Xie, Y. Fu, W. Xiong, Y. Shen, Automated intrusion response system model based on danger theory, J. Commun., 33 (2012), 136-144. |
[13] | H. Deng, L. Peng, J. Zhang, C. Tang, H. Fang, H. Liu, An intelligent aerator algorithm inspired-by deep learning, Math. Biosci. Eng., 16 (2019), 2990-3002. doi: 10.3934/mbe.2019148 |
[14] | C. Liang, L. Peng, An Automated Diagnosis System of Liver Disease using Artificial Immune and Genetic Algorithms, J. Med. Syst., 37 (2013), 9932. |
[15] | T. Li, An immune based model for network monitoring, Chin. J. Comput., 29 (2006), 1515-1522. |
[16] | J. Yang, T. Li, S. Liu, T. Wang, D. Wang, G. Liang, Computer Forensics System Based on Artificial Immune Systems, J. Univers. Comput. Sci., 13 (2007), 1354-1365. |
[17] | S. Forrest, A. S. Perelson, L. Allen, R. Cherukuri, Self-Nonself Discrimination in a Computer, in IEEE Computer Society Symposium on Research in Security and Privacy, IEEE Computer Society Press, (2002), 202-212. |
[18] | M. Wojciech, C. Luca, W. Steffen, Recent Advancements in Digital Forensics, IEEE Secur. Priv., 15 (2017), 10-11. |
[19] | Y. Qi, Computer Real-Time Location Forensics Method for Network Intrusion Crimes, Int. J. Network Secur., 21 (2019), 530-535. |
[20] | J. dos Santos Almeida1, L. de Santana Nascimento, D. A. M. José, Computer Forensics: A Linux Case Study Applied to Pedophilia Crime Investigation in Brazil, Int. J. CyberSecur. Digit. Foren, 8 (2019), 31-42. |
[21] | A. Flora, C. Aniello, C. Giovanni, N. Fabio, A semantic-based methodology for digital forensics analysis, J. Parallel Distr. Comput., 2020 (2020), 172-177. |
[22] | S. Hofmeyr, S. Forrest, Architecture for an artificial immune system, Evol. Comput., 8 (2000), 443-473. doi: 10.1162/106365600568257 |
[23] | J. Ding, An Extended Immune-Based Model for Computer Forensics, Proceedings of the 2008 International Conference on Computer Science and Software Engineering, 2009. |