Citation: Qian Zhang, Haigang Li. An improved least squares SVM with adaptive PSO for the prediction of coal spontaneous combustion[J]. Mathematical Biosciences and Engineering, 2019, 16(4): 3169-3182. doi: 10.3934/mbe.2019157
[1] |
|
[2] | 1. H. G. Li and Q. Zhang, Test system and automatic control of coal spontaneous combustion tendency oxidation kinetics, Chin. Univ. Min. Techn. Press, (14), 25–49. |
[3] | 2. H. F. Zhang, X. G. Chen and X. L. Sun, Classification research on coal spontaneous combustion based on fuzzy comprehensive evaluation, Coal Techn., (2014), 209–210. |
[4] | 3. T. S. Li, C. J. Lin, P. H. Kuo, et al., Grasping posture control design for a home service robot using an ABC-based adaptive PSO algorithm, Int. J. Adv. Robot. Syst., (2016), 1–15. |
[5] | 4. K. Meng, Z. Y. Dong and D. H. Wang, A self-adaptive RBF neural network classifier for transformer Fault analysis, IEEE Trans. Power Appar. Syst., 22010), 1350–1360. |
[6] | 5. W. C. Gu, B. R. Chai and Y. P. Teng, Research on support vector machine based on particle swarm optimization, T. Beijing Inst. Techn., 34(2014), 705–709. |
[7] | 6. H. G. Bargh and M. H. Sadr, Vibration Optimization of fiber-metal laminated composite shallow shell panels using an adaptive PSO algorithm, Mech. Adv. Compos. Struct., 4(201, 99–110. |
[8] | 7. J. Deng, Z. Xing and L. Ma, Application of multiple regression analysis in coal spontaneous combustion prediction, J. Xi'An Univ. Sci. Technol., 3(2011), 645–64 |
[9] | 8. L. Wang, S.J. Wu and C. Q. Li, Coal spontaneous combustion prediction based on grey-markov model, Comput. S., 31(2014), 416–420. |
[10] | 9. Y. Gao, M. G. Qin and M. J. Li, Analysis on prediction of residual coal spontaneous combustion in goaf based on support vector machine, Coal Sci. Technol., 38(20,50–54. |
[11] | 10. Y. P. Jin, B. Zhang and K. Gao, Application of spherical SVM in forecasting spontaneous combustion of coal, Comput. Appl. Softw., 30(2013), 57–60. |
[12] | 11. A. Sahu and S. Patnaik, Evolving neuro structure using adaptive PSO and modified TLBO for classification, Procedia Computer Sci., 92 (2016), 450–454. |
[13] | 12. W. P. Ding, C. T. Lin, M. Prasad, et al., A layered coevolution based attribute-boosted reduction using adaptive quantum behavior PSO and its consistent segmentation for neonates brain tissue, IEEE T. Fuzzy Syst., (2017),1–16. |
[14] | 13. K. W. Xia, Y. Dong and H. B. Du, Oil layer recognition model of LS-SVM based on improved PSO algorithm, Control Decis., 22(2007), 1385–1389. |
[15] | 14. S. R. Inkollu and V. R. Kota, Optimal setting of FACTS devices for voltage stability improvement using PSO adaptive GSA hybrid algorithm, Eng. Sci. Techn., 19(2016),1166–1176. |
[16] | 15. Y. Zhang, D. W. Gong and J. Cheng, Multi-objective particle swarm optimization approach for cost-based feature selection in classification, IEEE/ACM T. Comput. Bi., 14(2017), 64–75. |
[17] | 16. L. L. Shan, H. J. Zhang, J. Wang, et al., Parameters optimization and implementation of mixed kernels Ε-SVM based on improved PSO algorithm, Appl. Res. Comp., 30(2013), 1636–1639. |
[18] | 17. Y. Zhang, D. W. Gong and Z. H. Ding, Handling multi-objective optimization problems with a multi-swarm cooperative particle swarm optimizer, Expert Syst. Appl., 38(2011): 3933–3941. |
[19] | 18. L. S. Coelho, Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems, Expert Syst. Appl., 37(2010), 1676–1683. |
[20] | 19. Q. Zhang, M. Li, X. S. Wang, et al., Instance-based transfer learning for multi-source domains, Acta Autom. Sin., 40(4), 1176–1183. |