Citation: Muntaser Safan. Mathematical analysis of an SIR respiratory infection model with sex and gender disparity: special reference to influenza A[J]. Mathematical Biosciences and Engineering, 2019, 16(4): 2613-2649. doi: 10.3934/mbe.2019131
[1] | B. Hancioglu, D. Swigon and G. Clermont, A dynamical model of human immune response to influenza A virus infection, J. Theor. Biol., 246 (2007), 70–86. |
[2] | L. Mohler, D. Flockerzi, H. Sann, et al., Mathematical model of influenza A virus production in large-scale microcarrier culture, Biotechnol. Bioeng., 90 (2005), 46–58. |
[3] | C. J. Luke and K. Subbarao, Vaccines for pandemic influenza, Emerg. Infect. Dis., 12 (2006), 66–72. |
[4] | M. Erdem, M. Safan, C. Castillo-Chavez, Mathematical Analysis of an SIQR Influenza model with Imperfect quarantine, B. Math. Biol., 79 (2017), 1612–1636. |
[5] | A. Flahault, E. Vergu, L. Coudeville, et al., Strategies for containing a global influenza pandemic, Vaccine, 24 (2006), 6751–6755. |
[6] | B. J. Coburn, B. G.Wagner and S. Blower, Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1), BMC Med., 7 (2009), 30–37. |
[7] | P. Y. Boelle, P. Bermillon, J. C. Desenclos, A preliminary estimation of the reproduction ratio for new influenza A(H1N1) from the outbreak in Mexico, March-April 2009, Eurosurveillance, 14 (2009), pii=19205. |
[8] | H. Nishiura, C. Castillo-Chavez, M. Safan, et al., Transmission potential of the new influenza A (H1N1) virus and its age-specificity in Japan, Eurosurveillance, 14 (2009), pii=19227. |
[9] | H. Nishiura H, G. Chowell, M. Safan, et al., Pros and cons of estimating the reproduction number from early epidemic growth rate of influenza A (H1N1) 2009, Theor. Biol. Med. Model., 7 (2010), 1–9. |
[10] | M. Nuno, Z. Feng, M. Martcheva, et al., Dynamics of two-strain influenza with isolation and partial cross-immunity, SIAM J. Appl. Math., 65 (2005), 964–982. |
[11] | A. L. Vivas-Barber, C. Castillo-Chavez and E. Barany, Dynamics of an "SAIQR" Influenza Model, Biomath., 3 (2014), 1–13. |
[12] | H. Hethcote, M. Zhien and L. Shengbing, Effects of quarantine in six endemic models for infectious diseases, Math. Biosci., 180 (2002), 141–160. |
[13] | A. Ruggieri, W. Malorni and W. Ricciardi, Gender disparity in response to anti-viral vaccines: new clues toward personalized vaccinology, Ital. J. Gender-Specific Med., 2 (2016), 93–98. |
[14] | S. L. Klein, A. Pekosz, C. Passaretti, et al., Sex, Gender and Influenza, World Health Organization, Geneva, (2010), 1–58. |
[15] | S. L. Klein and K. L. Flanagan, Sex differences in immune responses, Nat. Rev. Immunol., 16 (2016), 626–638. |
[16] | D. Furman, B. P. Hejblum, N. Simon, et al., Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination, P. Natl. Acad. Sci. USA, 111 (2014), 869–874. |
[17] | S. L. Klein, A. Hodgson and D. P. Robinson, Mechanisms of sex disparities in influenza pathogenesis, J. Leukoc. Biol., 92 (2012), 67–73. |
[18] | S. L. Klein, I. Marriott and E. N. Fish, Sex-based differences in immune function and responses to vaccination, Trans. R. Soc. Trop. Med. Hyg., 109 (2015), 9–15. |
[19] | A. Ruggieri, S. Anticoli, A. D'Ambrosio, et al., The influence of sex and gender on immunity, infection and vaccination, Ann. Ist. Super Sanità, 52 (2016), 198–204. |
[20] | A. L. Fink and S. Klein, Sex and Gender Impact Immune Responses to Vaccines Among the Elderly, Physiology, 30 (2015), 408–416. |
[21] | J. Fisher, N. Jung, N. Robinson, et al., Sex differences in immune responses to infectious diseases, Infection, 43 (2015), 399–403. |
[22] | S. L. Klein, Sex influences immune responses to viruses, and efficacy of prophylaxis and therapeutic treatments for viral diseases, Bioessays, 34 (2012), 1050–1059. |
[23] | J. V. Lunzen and M. Altfeld, Sex Differences in Infectious Diseases? Common but Neglected, J. Infect. Dis., 209(S3) (2014), S79–80. |
[24] | X. Tan, L. Yuan, J. Zhou, et al., Modelling the initial transmission dynamics of influenza A H1N1 in Guangdong Province, China, Int. J. Infect. Dis., 17 (2017), e479–e484. |
[25] | N. S. Cardell and D. E. Kanouse, Modeling heterogeneity in susceptibility and infectivity for HIV infection, in Mathematical and Statistical Approaches to AIDS Epidemiology, Lecture notes in biomathematics, 88 (eds. C. Castillo-Chavez), Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo Hong Kong, (1989), 138–156. |
[26] | M. Safan and K. Dietz, On the eradicability of infections with partially protective vaccination in models with backward bifurcation, Math. Biosci. Eng., 6 (2009), 395–407. |
[27] | M. Safan, M Kretzschmar and K. P. Hadeler, Vaccination based control of infections in SIRS models with reinfection: special reference to pertussis, J. Math. Biol., 67 (2013), 1083–1110. |
[28] | O. Neyrolles and L. Quintana-Murci, Sexual Inequality in Tuberculosis, PLoS Med., 6 (2009), e1000199. https://doi.org/10.1371/journal.pmed.1000199. |
[29] | World Health Organization, Global tuberculosis control 2009: epidemiology, strategy, financing, Geneva: WHO, 2009. Available from: http://www.who.int/tb/country/en/index.html. |
[30] | European Centre for Disease Prevention and Control, Pertussis. In: ECDC. Annual epidemiological report for 2015. Stockholm: ECDC; 2017. |
[31] | World Health Organization (2018), Global Health Observatory (GHO) data: Number of women living with HIV, accessed 29 November 2018, http://www.who.int/gho/hiv/epidemic$_ $status/cases$_$adults$_$women$_$children$_$text/en/. |
[32] | U.S. Department of Health & Human Services, Office on Women's Health (last updated 21 November 2018), Women and HIV, accessed 29 November 2018, https://www. womenshealth.gov/hiv-and-aids/women-and-hiv. |
[33] | Avert (last updated 21 August 2018), Global information and education on HIV and AIDS: Women and girls (HIV and AIDS), accessed 29 November 2018, https://www.avert.org/ professionals/hiv-social-issues/key-affected-populations/women. |
[34] | O. Diekmann, J. A. P. Heesterbeek and M. G. Roberts, The Construction of next-Generation Matrices for Compartmental Epidemic Models, J. R. Soc. Interface, 47 (2010), 873–885. |
[35] | H. Thieme, Mathematics in Population Biology, Princeton university press, Princeton, New Jersey, 2003. |
[36] | C. Castillo-Chavez, Z. Feng and W. Huang, On the computation of R0 and its role on global stability, in Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction (eds. C. Castillo-Chavez, S. Blower, P. van den Driessche, D. Krirschner and A. A. Yakubu), The IMA Volumes in Mathematics and its Applications 125, Springer-Verlag, New York, (2002), 229–250. |
[37] | O. Patterson-Lomba, M. Safan, S. Towers, et al., Modeling the Role of Healthcare Access Inequalities in Epidemic Outcomes, Math. Biosci. Eng., 13 (2016), 1011–1041. |
[38] | United States Centers for Disease Control and Prevention (2011) A CDC framework for preventing infectious diseases: Sustaining the Essentials and Innovating for the Future, October 2011. |
[39] | World Health Organization. Evaluation of influenza vaccine effectiveness: a guide to the design and interpretation of observational studies, Geneva: World Health Organization, 2017. |
[40] | H. L. Smith and H. Thieme, Dynamical Systems and Population Persistence, AMS, 2011. |
[41] | M. Eichner, M. Schwehm, L. Eichner, et al., Direct and indirect effects of influenza vaccination, BMC Infect. Dis., 17 (2017), 308–315. |