Citation: Xuwen Wang, Yu Zhang, Zhen Guo, Jiao Li. Identifying concepts from medical images via transfer learning and image retrieval[J]. Mathematical Biosciences and Engineering, 2019, 16(4): 1978-1991. doi: 10.3934/mbe.2019097
[1] | G. J. Litjens, T. Kooi and B. E. Bejnordi, et al., A survey on deep learning in medical image analysis, Med. Image Anal., 42(2017), 60–88. |
[2] | X. Kong, T. Tan and L. Bao, et al., Classification of breast mass in 3D ultrasound images with annotations based on convolutional neural networks. Chin. J. Biomed. Eng., 37(2018), 414–422. |
[3] | S. J. Pan and Q. Yang, A survey on transfer learning, IEEE T. Knowl. Data. En., 22(2010), 1345–1359. |
[4] | A. Esteva, B. Kuprel and R. A. Novoa, et al., Dermatologist-level classification of skin cancer with deep neural networks, Nature, 542(2017), 115–118. |
[5] | Y. Yu, H. Lin and J. Meng, et al., Classification modeling and recognition for cross modal and multi-label biomedical image. J. Image Graph., 23(2018), 917–927. |
[6] | C. Eickhoff, I. Schwall and A. G. Seco de Herrera, et al., Overview of ImageCLEFcaption 2017–image caption prediction and concept detection for biomedical images. In: G. J. F. Jones, S. Lawless and J. Gonzalo, et al., editors. Lect. Notes. Comput. SC.: Experimental IR meets multilinguality, multimodality, and interaction. 8th International Conference of the CLEF Association (CLEF 2017); September 11–14, 2017; Dublin, Ireland. Cham: Springer; 2017 Aug 17. 10456(2017), 315–337. |
[7] | ImageCLEFcaption 2018: ImageCLEF/LifeCLEF–Multimedia Retrieval in CLEF [Internet]. Avignon, France: the CLEF initiative labs. 2018-[cited 2019 Feb 26]. Available from: http://www.imageclef.org/2018/caption. |
[8] | UMLS: Unified Medical Language System [Internet]. Bethesda, Maryland: U.S. National Library of Medicine. 1986-[cited 2019 Feb 26]. Available from: https://www.nlm.nih.gov/research/umls/. |
[9] | O. Bodenreider, The unified medical language system (umls): integrating biomedical terminology. Nucleic Acids Res., 32(2004), 267–270. |
[10] | A. G. Seco de Herrera, C. Eickhoff and V. Andrearczyk, et al., Overview of the ImageCLEF 2018 caption prediction tasks. Paper presented at: CLEF 2018. Working Notes of CLEF 2018-Conference and Labs of the Evaluation Forum, CEUR Workshop Proceedings; 2018 Sep 10–14; Avignon, France. |
[11] | E. Pinho, J. F. Silva and J. M. Silva, Towards representation learning for biomedical concept detection in medical images: UA.PT bioinformatics in ImageCLEF 2017. Paper presented at: CLEF 2017. Working notes of CLEF 2017-Conference and Labs of the Evaluation Forum, CEUR Workshop Proceedings; 2017 Sep 11–14; Dublin, Ireland. |
[12] | D. Katsios and E. Kavallieratou, Concept detection on medical images using deep residual learning network. Paper presented at: CLEF 2017. Working notes of CLEF 2017-Conference and Labs of the Evaluation Forum, CEUR Workshop Proceedings; 2017 Sep 11–14; Dublin, Ireland. |
[13] | N. N. Hoavy, J. Mothe and M.I. Randrianarivony, IRIT & MISA at ImageCLEF 2017-multi label classification. Paper presented at: CLEF 2017. Working notes of CLEF 2017-Conference and Labs of the Evaluation Forum, CEUR Workshop Proceedings; 2017 Sep 11–14; Dublin, Ireland. |
[14] | L. Valavanis and T. Kalamboukis, IPL at ImageCLEF 2018: a KNN-based concept detection approach. Paper presented at: CLEF 2018. Working notes of CLEF 2018-Conference and Labs of the Evaluation Forum, CEUR Workshop Proceedings; 2018 Sep 10–14; Avignon, France. |
[15] | M. M. Rahman, T. Lagree and M. Taylor, A cross-modal concept detection and caption prediction approach in ImageCLEFcaption track of ImageCLEF 2017. Paper presented at: CLEF 2017. Working notes of CLEF 2017-Conference and Labs of the Evaluation Forum, CEUR Workshop Proceedings; 2017 Sep 11–14; Dublin, Ireland. |
[16] | Y. Zhang, X. Wang and Z. Guo, et al., ImageSem at ImageCLEF 2018 caption task: image retrieval and transfer learning, Paper presented at: CLEF 2018. Working notes of CLEF 2018-Conference and Labs of the Evaluation Forum, CEUR Workshop Proceedings; 2018 Sep 10–14; Avignon, France. |
[17] | E. Pinho and C. Costa, Feature learning with adversarial networks for concept detection in medical images: UA.PT bioinformatics at ImageCLEF 2018. Paper presented at: CLEF 2018. Working notes of CLEF 2018-Conference and Labs of the Evaluation Forum, CEUR Workshop Proceedings; 2018 Sep 10–14; Avignon, France. |
[18] | PMC: PubMed Central [Internet]. Bethesda, Maryland: National Center for Biotechnology Information (NCBI), U.S. National Institutes of Health's, National Library of Medicine. 2000-[cited 2019 Feb 26]. Available from: https://www.ncbi.nlm.nih.gov/pmc/. |
[19] | QuickUMLS: System for Medical Concept Extraction [Internet]. Georgetown University, Washington: Luca Soldaini and Nazli Goharian. 2016-[cited 2019 Feb 26]. Available from: https://github.com/Georgetown-IR-Lab/QuickUMLS |
[20] | MetaMap: A Tool for Recognizing UMLS Concepts in Text [Internet]. Bethesda, Maryland: U.S. National Institutes of Health's, National Library of Medicine. 1996-[cited 2019 Feb 26]. Available from: https://metamap.nlm.nih.gov/. |
[21] | LIRE: Lucene Image Retrieval [Internet]. Klagenfurt University, AT: Mathias Lux. 2015-[cited 2019 Feb 26]. Available from: http://www.lire-project.net/. |
[22] | R. Gan and J. Yin, Using LIRe to implement image retrieval system based on multi-feature descriptor. Proceedings of the Third International Conference on Digital Manufacturing & Automation; 2012 Jul 31–Aug 2; Guilin, China. IEEE; 2012 Sep 13. 1014–1017p. |
[23] | C. Szegedy, V. Vanhoucke and S. Ioffe, et al., Rethinking the inception architecture for computer vision. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition; 2016 Jun 27–30; La Vegas, NV, USA. IEEE; 2016 Dec 12. 2818–2826p. |
[24] | O. Russakovsky, J. Deng and H. Su, et al., ImageNet large scale visual recognition challenge. Int. J. Comput. Vis., 115(2015), 211–252. |
[25] | D.M. Blei, A.Y. Ng and M. I. Jordan, Latent dirichlet allocation. J. Mach. Learn. Res., 3 (2003), 993–1022. |
[26] | Gensim, topic modelling for humans [Internet]. Masaryk University, Czech: Radim Řehůřek. 2009-[cited 2019 Feb 26]. Available from: https://radimrehurek.com/gensim/. |