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Abstract: Automatically identifying semantic concepts from medical images provides multimodal 

insights for clinical research. To study the effectiveness of concept detection on large scale medical 

images, we reconstructed over 230,000 medical image-concepts pairs collected from the 

ImageCLEFcaption 2018 evaluation task. A transfer learning-based multi-label classification model 

was used to predict multiple high-frequency concepts for medical images. Semantically relevant 

concepts of visually similar medical images were identified by the image retrieval-based topic model. 

The results showed that the transfer learning method achieved F1 score of 0.1298, which was 

comparable with the state of art methods in the ImageCLEFcaption tasks. The image retrieval-based 

method contributed to the recall performance but reduced the overall F1 score, since the retrieval 

results of the search engine introduced irrelevant concepts. Although our proposed method achieved 

second-best performance in the concept detection subtask of ImageCLEFcaption 2018, there will be 

plenty of further work to improve the concept detection with better understanding the medical images. 

Keywords: concept detection; transfer learning; multi-label classification; medical image 

retrieval; LDA 

 

1. Introduction  

Medical images such as Computed Tomography (CT), X-ray and pathological images have 

become the key evidence for clinical diagnosis. Interpreting the insights gained from medical images 

requires adequate medical knowledge and clinical experiences. With the rapid growth of digital 

medical images, automatically identifying semantic concepts from medical images provides useful 
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multimodal information for clinical research.  

Inspired by recent success of deep learning models in image analysis [1], many researchers 

exploit various models to interpret medical images for clinical applications, such as disease detection 

and lesion recognition, e.g., Kong et al. put forward three kinds of convolutional neural networks 

(CNNs) models and integrated transverse plane images, coronal plane images, and annotations 

information to improve the accuracy of breast tumor classification, and achieved the accuracy of 

75.11% and AUC of 0.8294  on a dataset containing 880 images [2]. However, due to the limited 

available medical images with semantic annotation, especially for rare diseases, most of the previous 

studies focus on the single-label prediction or a few of multi-label classification on small datasets. 

To address the problem of limited training data, Pan et al. introduced the transfer learning 

method to transform knowledge learned from one domain to another [3]. For similar tasks such as 

image analysis, previous layers of deep neural networks have the same functions. So deep models 

such as convolutional neural networks (CNNs) can be trained and transformed efficiently between 

different datasets by sharing and fine-tune similar parameters. Esteva et al. trained a deep learning 

model on more than 1.28 million images of common items, and then successfully trained a 

human-level skin cancer detection model by transfer learning on 120,000 manually labeled skin 

cancer images [4]. Yu et al. proposed a hybrid transfer learning method for recognizing 30 labels 

from composite biomedical images and achieved the F1 value of 0.488 [5]. 

To explore automatic methods mapping from visual information to condensed textual 

descriptions, the CLEF Cross-Language Image Retrieval Track (ImageCLEF) launched the 

ImageCLEFcaption evaluation task since 2017 [6]. The recent ImageCLEFcaption 2018 task 

contains two subtasks, namely concept detection and caption prediction [7]. The concept detection 

subtask aims to identify the Unified Medical Language System (UMLS) Concept Unique Identifiers 

(CUIs) [8,9] for a given medical image from biomedical literature. It can be seen from the 

overview [6,10] that most researchers used some form of CNNs to represent visual information, 

fewer researchers used a traditional bag of visual words model. On the basis of the visual 

representation, additional methods such as attention mechanism were also used to identify useful 

medical concepts. On average, concepts detected by CNNs models were more robust, while the use 

of very deep residual networks did not introduce significant improvements over shallower 

networks [11–13]. As another popular method, several works used image retrieval to obtain 

visually similar images of given medical images and then detected concepts from the captions of 

retrieved images [14,15]. Zhang et al. presented the participation of our ImageSem group at the 

ImageCLEFcaption 2018 task, briefly introduced concept detection methods based on CNNs models 

and image retrieval, and achieved the second-best F1 score of 0.092 in the concept detection task [16]. 

Pinho et al. achieved a best mean F1 score of 0.1102 in the same concept detection task, using two 

kinds of classification algorithms over the feature spaces learned from a variant of generative 

adversarial networks with an auto-encoding process [17]. Although the overall performance is too far 

from the application, it is generally believed that the task of concept detection on large-scale 

heterogeneous medical images is challenging but meaningful. 

To better understanding and describing the semantic content of medical images, we 

reconstructed a dataset of medical image-concepts pairs for concept detection on the basis of the 

ImageCLEFcaption 2018 collection. Based on the new dataset, we identified multiple concepts from 

large scale medical images by complementary methods, including the transfer learning-based 

multi-label classification models for high-frequency concepts, the image retrieval-based topic models 
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for latent relevant concepts from visually similar images, and fusion strategies combining concepts 

identified by both methods.  

This paper is organized as follows: Section 2 introduces the material and methods, including 

dataset reconstruction, data analysis, data preprocessing, as well as multiple concept detection 

methods. Section 3 describes the experiments of concept detection on medical images. Section 4 

shows the results of different methods and fusion strategies. Section 5 discusses errors and makes a 

brief conclusion. 

2. Materials and method 

2.1. Data 

2.1.1. Data reconstruction 

The corpus of annotated medical images is important for understanding the insights of medical 

images. The ImageCLEFcaption 2018 task [6] released a collection of medical image-caption pairs 

collected from scholarly articles in PubMed Central (PMC) [18]. Images were classified 

automatically to select useful radiology or clinical images, and the QuickUMLS toolkit [19] was 

used to annotate UMLS concepts in image captions. Each image was assigned with multiple 

concepts represented by Concept Unique Identifiers (CUIs). The collection of the 

ImageCLEFcaption 2018 concept detection subtask comprises a training set of 222,314 medical 

image-concepts pairs, and a test set of 9,938 image-concepts pairs. However, due to automatic 

labeling and unknown expanding strategies, the collection contains totally 111,156 concepts, in 

which mixed with lots of noise words or irrelevant concepts. Table1 shows the top 10 high-frequency 

CUIs in the ImageCLEFcaption 2018 training set. 

Table 1. Top 10 high-frequency concepts in the concept detection training set of the 

ImageCLEFcaption 2018 collection. 

CUIs Associated images UMLS terms 

C1550557 77,003 Relationship Conjunction - and 

C1706368 77,003 And -dosing instruction fragment 

C1704254 20,165 Medical Image 

C1696103 20,164 Image-dosage form 

C1704922 20,164 Image 

C3542466 20,164 Image (foundation metadata concept) 

C1837463 19,491 Narrow face 

C0376152 19,253 Marrow 

C1546708 19,253 Marrow-Specimen Source Codes 

C0771936 19,079 Yarrow flower extract 

By observing concept CUIs and corresponding UMLS terms (backtracked from UMLS), we 

found that instead of medical terminology, the concept most commonly used to interpret medical 

images was a meaningless conjunction “AND”. Synonyms such as „Medical Image‟, „image-dosage 

form‟, „image‟, etc., were assigned to the same image repeatedly. In addition, some unreasonable 
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matching strategies may lead to the abnormal quantity of concepts, e.g., a term „Arrow‟ was mapped 

to multiple concepts with similar lexical form but the inconsistent meaning (such as „Narrow face‟, 

„Marrow‟, „Yarrow flower extract‟). To sum up, this ground truth provides plenty of inappropriate 

concepts for interpreting medical images. It is difficult for analyzing the semantic association 

between concepts and images from either computational view or biomedical view.  

In this study, to reduce the influence of uneven noisy data and interpret medical images with 

more useful concepts, we reconstructed the concept detection dataset based on the image-caption 

pairs from the ImageCLEFcaption 2018 collection. The reconstructed collection includes a training 

set (Rec-training) and a test set (Rec-test) containing 222,314 and 9,938 medical images respectively. 

We used MetaMap [20] to recognize concepts in image captions, chose the strict strategy to 

guarantee the quality of concepts. The new dataset is referred to as the ImageSem collection. 

2.1.2. Data analysis 

The Rec-training set includes 222,314 images annotated with 76,938 non-repetitive concepts 

(CUIs), which are significantly different from the ImageCLEFcaption 2018 collection in concepts 

quantity and frequency, as shown in Table 2.  

Table 2. Top 10 high-frequency CUIs in the Rec-training set of the ImageSem collection. 

CUIs Quantity of associated images UMLS terms 

C1547282 69,808 Show 

C0336721 27,060 Arrow 

C1704922 19,121 Image 

C0449911 15,882 View 

C0523207 10,916 Hematoxylin and eosin stain method 

C0030705 10,786 Patients 

C0205091 10,082 Left 

C0205090 8,626 Right 

C4489445 8,127 Magnification 

Figure 1 shows a medical image with its corresponding caption and concepts. Compared with 

concepts annotated by the ImageCLEFcaption 2018 task, the new concepts from the ImageSem 

collection are more loyal to the image caption and concise enough for interpreting the given image. 

Table 3 shows the distribution of medical concepts in the Rec-training set. The CUIs frequency 

is equivalent to the quantity of associated images of a specific concept. It is observed that most 

concepts (92.87%) appear in less than 50 images. The overall occurrence of the CUIs in the 

Rec-training set is 2,241,191, in which concepts with the frequency higher than 1,000 account for 40% 

of the overall occurrence, and concepts with the frequency higher than 500 account for 50%. 
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Figure 1. An example of a medical image with its caption and concepts. 

Table 3. Statistics of concepts assigned to medical images in the Rec-training set. 

CUIs frequency CUIs quantity Proportion 

0–10 60,152 78.18% 

10–50 11,303 14.69% 

50–100 2,345 3.05% 

100–500 2,413 3.14% 

500–1000 393 0.51% 

1000–10000 325 0.42% 

10000+ 7 0.009% 

Total 76,938 100.00% 

2.1.3. Data preprocessing 

2.1.3.1. Selecting concepts and images for transfer learning 

Considering the uneven concept distribution in table 3, it is too hard to build a transfer learning 

model for so many low-frequency concepts, and a mass of concepts may give rise to a significant 

increase in training time. As a compromise, we define the problem of detecting high-frequency 

concepts from medical images as a multi-label classification task. For training the multi-label 

classification model, we separately selected 332 CUIs appeared in more than 1,000 medical images 

and 725 CUIs appeared in more than 500 images in the Rec-training set, namely TL_F1000 subset 

and TL_F500 subset. Then we extracted all the medical images containing high-frequency CUIs 

from the Rec-training set. Totally 192,478 medical images for the TL_F1000 subset and 200,662 

medical images for the TL_F500 subset. For each medical image, we filtered out low-frequency CUIs.  

2.1.3.2. Image indexing 

For the image retrieval-based method, we employed LIRE (Lucene Image Retrieval) [21,22] to 

perform content-based image retrieval (CBIR). LIRE is an open source Java library that provides a 
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simple way to retrieve images and photos based on color and texture characteristics. We created the 

Lucene index for medical images as well as corresponding captions and concepts in the Rec-training 

set. Then we retrieved visually similar images and collected image-concepts pairs for each target image. 

2.2. Concept detection methods 

In this section, we describe complementary methods to identify multiple concepts for a specific 

image, including the transfer learning method, the image retrieval-based topic modeling method and 

also the fusion strategies of the two methods. 

2.2.1. Transfer learning for detecting high-frequency concepts 

We used the transfer learning method to identify multiple high-frequency concepts for medical 

images. We applied Inception-V3, a CNNs model released by Google, to perform multi-label 

classification. Profit from improvements in the factorization of convolution kernel, the Inception-V3 

model can decompose a 7 × 7 convolution kernel into two one-dimensional convolution kernels(a 1 

× 7 kernel and a 7 × 1 kernel), which speed up the calculations and increase the network depth.  

In this work, the Inception-V3 model was pre-trained on the ImageNet datasets including 1.2 

million images with more than 1,000 common object classes [23,24]. Specifically, all the parameters 

of previous layers were frozen and the last softmax layer was replaced with a fully-connected layer 

and a sigmoid layer. During the re-training step, only the last two new layers were trained to map 

medical images to concept CUIs, which cost a very short time. We retrained the CNNs model on 

both of the TL_F1000 and the TL_F500 subset, namely normal transfer learning. As medical images 

in the ImageSem collection vary a lot with the ImageNet dataset, we also tried to retrain more layers 

of the CNNs model and fine-tune weights layer by layer, which may cost longer training time, 

namely a global fine-tune transfer learning. 

2.2.2. Image retrieval-based topic model for identifying relevant concepts 

Different from the transfer learning method that focuses on high-frequency concepts, the image 

retrieval-based method identifies relevant concepts from visually similar images, which contain both 

high and low-frequency concepts. In this section, we used the topic model to analyze the topic 

distribution of concepts collected from retrieved similar images, and selected topical relevant 

concepts for a specific medical image.  

Firstly, we submitted a query image to the search engine to retrieve similar images from the 

Rec-training set. Then we collected concepts from retrieved images as relevant documents. Each 

document is assumed to be a mixture of a number of topics, and each concept belongs to one of the 

topics. We employed the Latent Dirichlet Allocation (LDA) model [25] to perform the topic 

modeling process.  

Let   be an image,   be the documents collected from similar images of  , and   

         be a sequence with   concepts. The objective of a concept detection model is to 

maximize the log-likelihood of the concept sequence of a given image, which is 
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 (1)  

Let             be the topics of a relevant document, K is the size of the topic set. Based on 

the above hypothesis, the objective function is converted to compute the log-likelihood of a joint 

distribution         , which can be approximated as follows. 

                                                    (2)  

                                   

 

   

 (3)  

Let             be the vocabulary with   concepts, and             be M 

documents containing concepts of similar images. Then document   is generated as follows. 

 Choose                 . 

 For each of the   concepts    in  : 

- Choose a topic                     . 

- Choose a concept    from           . 

Where   and   are hyper-parameters for the symmetric Dirichlet distributions, the mixing 

proportion   is drawn from a Dirichlet prior with parameter  . The probability of   is defined as 

follows. 

                                    

  

 

   

 
 

   (4)  

Then we can learn       , concept probabilities given a topic, and        , topic probabilities 

given a document, which provides clues for choosing useful concepts. 

2.2.3. Fusion strategies for concept detection 

To make better use of the results from both methods, we proposed three fusion strategies to 

cover as many useful concepts as possible. The first approach combined the results of the transfer 

learning method and the image retrieval-based topic model directly. The second one used 

high-frequency concepts detected in transfer learning method as a hint for choosing better candidate 

topics in the image retrieval-based method. The third one filtered the input CUIs documents of the 

topic model with high-frequency concepts detected in transfer learning method. 

3. Experiments 

3.1. Experimental setup 

An experimental study was performed to verify the effectiveness of proposed concept detection 
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methods. As for the collection, we randomly selected 10,000 samples from the Rec-training set as the 

validation set for regulating parameters. The rest of 212,314 image-concepts pairs remained as the 

training set. The overall 9,938 medical images in the test set were used for evaluating the 

performance of different methods.  

As a baseline method, we combined concept CUIs of top 10 similar images directly for a given 

test image. As for training the transfer learning model, medical images were resized to 299 x 299 

pixels, the batch size was set to 20, the learning rate was set to 0.003, the training steps was set to 

25000. As for the retrieval-based topic model, we applied Gensim [26], a Python package for 

modeling the topical distribution of concepts. For a given image, we collected CUIs of retrieved 

similar images as the input of LDA model. According to the topic distribution of the retrieved CUIs 

documents, we picked the topic with the highest probability as the candidate topic, and selected CUIs 

with probabilities above the threshold    from the candidate topic as the final output. The 

hyper-parameters   and   were learned automatically from corpora, the number of topics K was 

set to 20, the iteration was set to 10,000, the number of similar images was set to 10, the threshold 

   of term probability in each topic was 0.01, and the gamma was set to 0.05. Then we combined 

the best results of the above methods with three different fusion strategies. 

3.2. Evaluation criteria 
 

The performance evaluation follows the ImageCLEFcaption 2018 task. The balanced precision 

and recall trade-off were measured in terms of F1 scores, which were computed by the Python‟s 

scikit-learn library. Specifically, we computed the micro F1 score for each medical image in the test 

set, and the average of micro F1 scores across all the test images was regarded as the final measure 

of the model. 

4. Results 

4.1. Results of transfer learning model 

Table 4 shows the effectiveness of multi-label classification models on the modified ground 

truth of the Rec-test set, namely “GT_F500” and “GT_F1000”, in which only concepts with the 

frequency above 500 and 1,000 remained. “TL_F500” and “TL_F1000” separately denote the results 

of transfer learning models trained on the TL_F500 subset and TL_F1000 subset. “TL_F500_gft” 

and “TL_F1000_gft” denote the results of global fine-tuned transfer learning models trained on the 

TL_F500 subset and TL_F1000 subset. It can be observed that, although more concepts were fed 

into the classification models (725 concepts in “TL_F500” VS 332 concepts in “TL_F1000”), 

models trained on the TL_F1000 subset achieved better results than the same one trained on the 

TL_F500 subset. This indicates to some extent that the CNNs model performs better on recognizing 

concepts with larger training samples, and too many labels may result in the reduction of 

classification. What we can also learn is that compared with normal transfer learning models, the 

global fine-tuned models such as “TL_F1000_gft” improved significantly, either in precision, recall 

or the F1 score.  
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Table 4. Results of concept detection by transfer learning models on the modified 

GT_F500 and GT_F1000 of the Rec-test set. 

Model Ground Truth P R F1 

TL_F500 GT_F500 0.0968 0.1939 0.1178 

TL_F500_gft GT_F500 0.1384 0.2725 0.1667 

TL_F1000 GT_F1000 0.1015 0.2554 0.1334 

TL_F1000_gft GT_F1000 0.1489 0.3686 0.1942 

Table 5 shows the results of concept detection by transfer learning models on the ground truth 

of the Rec-test set. The overall performance of transfer learning models declined due to the 

additional low-frequency concepts in the ground truth. However, the global fine-tuned transfer 

learning model “TL_F1000_gft” showed robustness and achieved the best F1 score of 0.1298, which 

is comparable with the state of art in large scale concept detection tasks. 

Table 5. Results of concept detection by transfer learning models on the Rec-test set. 

Model P R F1 

TL_F500 0.0918 0.0978 0.0874 

TL_F500_ft 0.1313 0.1413 0.1245 

TL_F1000 0.0931 0.0991 0.0885 

TL_F1000_ft 0.1365 0.1486 0.1298 

4.2. Results of image retrieval-based topic model 

As for the image retrieval-based topic models, experiments were performed on the Rec-test set 

and the corresponding CUIs of retrieved similar images, as shown in Table 6. The baseline was 

“ReSim_10”, which combined concepts of retrieved top 10 similar images of a given image. The 

“RT” represents the results of the image retrieval-based topic model with default parameters. The 

“RT_10+” used the same parameters as the “RT” model but remain CUIs with the frequency higher 

than 10 in the Rec-training set, and achieved F1 score of 0.0515.  

Table 6. Results of concepts detection by image retrieval-based methods on the Rec-test set. 

Model P R F1  

ReSim_10 0.0209 0.1867 0.0363 

RT 0.0344 0.0754 0.0428 

RT_10+ 0.0411 0.0906 0.0515 

It can be seen that image retrieval-based models achieved a recall of 0.0906, which was 

approximate with normal transfer learning methods. However, the low precision of the 

retrieval-based models indicated that noise concepts account for a large proportion in results. 

Inspired by this, the image retrieval based method should be improved from two aspects: on the one 

hand, due to the noise of the retrieval results, the concept documents that is irrelevant to the test 

image should be filtered out; on the other hand, the topic with the highest probability may not be the 

sole correct choice, and external semantic information can be used to select useful topics. 
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4.3. Results of fusion strategies 

Table 7 shows the results of different fusion strategies. “F1_500” is the combination of concepts 

from “TL_F500_gft” and “RT”, and “F1_1000” is the combination of concepts from “TL_F1000_gft” 

and “RT”, removing duplicated CUIs. It can be observed that “F1_500” and “F1_1000” recalled 

more relevant concepts than a single model (best recall of 0.1711), while the overall accuracy was 

reduced by introducing too much noise. “F2_500” and “F2_1000” separately used concepts predicted 

by “TL_F500_gft” and “TL_F1000_gft” as a hint for choosing candidate topics in the image 

retrieval-based topic models. This strategy improved the precision of topic model (precision of 

0.1976 for “F2_500” and 0.2002 for “F2_1000”) significantly by selecting useful topics, but it also 

neglected many low-frequency concepts and reduced the recall heavily. “F3_500” and “F3_1000” 

filtered some irrelevant CUIs documents based on concepts predicted by “TL_F500_gft” and 

“TL_F1000_gft”. Compared with former methods, the topic model recalled more useful concepts 

(recall of 0.1180).  

Table 7. Results of concepts detection by fusion strategies on the Rec-test set. 

Methods P R F1  

F1_500 0.0551 0.1644 0.0763 

F1_1000 0.0569 0.1711 0.0789 

F2_500 0.1976 0.0380 0.0557 

F2_1000 0.2002 0.0398 0.0578 

F3_500 0.0393 0.1153 0.0518 

F3_1000 0.0403 0.1180 0.0532 

4.4. Quality and error analysis 

4.4.1. Impact of data quality 

As mentioned in section 1 and section 2.1.1, our ImageSem group participated the 

ImageCLEFcaption 2018 task and applied similar methods on the ImageCLEFcaption 2018 

collection, and our transfer learning method achieved second-best F1 score of 0.0928 in the concept 

detection task. Compared with results on the reconstructed ImageSem collection in table 5, in which 

the best overall result was 0.1298, the robustness of transfer learning methods across different 

datasets was verified. The retrieval-based method achieved 0.0907 on the ImageCLEFcaption data, 

but declined to 0.0515 on the ImageSem data. One possible reason is that in the case of the same 

retrieved images, topic models are very sensitive to the variation of concepts distribution. The other 

reason is that a large number of high-frequency concepts in the ImageCLEFcaption 2018 collection 

were easier to be captured, but not necessarily meaningful. 

4.4.2. Case analysis 

Despite the low scores on statistical evaluation, we think there is still some useful information 

learned from the large scale multimodal collection. Figure 2 shows a sample of test images. It is 

observed that medical concepts annotated by MetaMap in the image caption ranged variously on 
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frequency distribution. Concepts with higher frequency, such as „C1704922 image‟ and „C0205123 

Coronal‟ are more likely to be detected. The deep transfer learning methods are good at predicting 

high-frequency concepts of limited scope, but cannot recognize low-frequency concepts in the 

training set or out of vocabulary concepts. The image retrieval-based topic models can reveal the 

high-frequency concepts and low-frequency concepts at the same time, but dependent heavily on the 

quality of the retrieved images. The higher similarity between the query image and the retrieved 

images, the more related concepts can be recalled, otherwise, a lot of noise words would be brought 

in. However, images retrieved by LIRE were often similar with query images in lower level, such as 

color, grayscale, contour, texture, etc. As shown in figure 3, the given query figure was a magnetic 

resonance image of a coronal section. Obviously, besides the very first image in the red frame, most 

of retrieved images were irrelevant with the query image, differ in either image types or body parts, 

which brought in plenty of irrelevant concepts. The fusion strategy, to some extent, may balance the 

results of the two methods and release the influence of data heterogeneity. 

 

Figure 2. A medical image with its caption and concepts annotated by the MetaMap. The 

lower part shows the typical concepts identified by the transfer learning model, the 

retrieval-based topic model and a fusion strategy.  
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Figure 3. A medical image and its similar images retrieved from the Rec-training set. 

5. Conclusion and further work 

This study applied the deep transfer learning model, the image retrieval-based topic model as 

well as fusion strategies of both methods to identify concepts from medical images. The experiments 

showed the preferable performance of deep transfer learning models on predicting high-frequency 

concepts for medical images, the best F1 score of 0.1298 verified the effectiveness of the CNNs 

model on multi-label classification. The image retrieval-based topic model recalled high and 

low-frequency concepts simultaneously, but depended heavily on the retrieval results and brought 

noises with the overall accuracy reduced. Due to the variety and diversity of the medical images as 

well as the massive quantity of medical concepts, the work of semantic concept detection of 

large-scale open medical images still needs further research and improvement. 

In future work, we will perform deeper data processing on the basis of the ImageSem collection, 

by adding more available image-text pairs, clustering the images into different groups based on the 

image type, the anatomy part, etc., and creating high quality label sets respectively. In addition, we 

will separately train deep models for different category of images, and seek more useful semantic 

clues from the external data. 
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