Citation: Guohui Zhang, Jinghe Sun, Xing Liu, Guodong Wang, Yangyang Yang. Solving flexible job shop scheduling problems with transportation time based on improved genetic algorithm[J]. Mathematical Biosciences and Engineering, 2019, 16(3): 1334-1347. doi: 10.3934/mbe.2019065
[1] | X. Y. Li and L. Gao, An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem, Int. J. Prod. Econ., 174 (2016), 93–110. |
[2] | X. Y. Li, C. Lu, L. Gao, et al., An effective multi-objective algorithm for energy efficient scheduling in a real-life welding shop, IEEE T. Ind. Inf., 14 (2018), 5400–5409. |
[3] | X. Y. Li, L. Gao, Q. K. Pan, et al., An effective hybrid genetic algorithm and variable neighborhood search for integrated process planning and scheduling in a packaging machine workshop, IEEE T. Syst. Man. Cy. A., (2018), DOI: 10.1109/TSMC.2018.2881686. |
[4] | G. H. Zhang, L. J. Zhang, X. H. Song, et al., A variable neighborhood search based genetic algorithm for flexible job shop scheduling problem, Clust. Comput., (2018), 1–12. |
[5] | G. H. Zhang, L. Gao and Y. Shi, An effective genetic algorithm for the flexible job-shop scheduling problem, Expert. Syst. Appl., 38 (2011), 3563–3573. |
[6] | G. H. Zhang, X. Y. Shao, P. G. Li, et al., An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem, Comput. Ind. Eng., 56 (2009), 1309–1318. |
[7] | J. Zhang, J. Jie, W. L. Wang, et al., A hybrid particle swarm optimisation for multi-objective flexible job-shop scheduling problem with dual-resources constrained, Int. J. Comput. Sci. Math., 8 (2018), 526. |
[8] | J. Wu, G. D. Wu, J. J. Wang, et al., Flexible job-shop scheduling problem based on hybrid ACO algorithm, Int. J. Simul. Model., 16 (2017), 497–505. |
[9] | D. M. Lei, Y. L. Zheng and X. P. Guo, A shuffled frog-leaping algorithm for flexible job shop scheduling with the consideration of energy consumption, Int. J. Prod. Res., 55 (2017), 3126–3140. |
[10] | Y. Xu, L. Wang, S. Y. Wang, et al., An effective teaching–learning-based optimization algorithm for the flexible job-shop scheduling problem with fuzzy processing time, Neurocomputing, 148 (2015), 260–268. |
[11] | C. Lu, X. Y. Li, L. Gao, et al., An effective multi-objective discrete virus optimization algorithm for flexible job-shop scheduling problem with controllable processing times, Comput. Ind. Eng., 104 (2017), 156–174. |
[12] | Y. Z. Zhou, W. C. Yi, L. Gao, et al., Adaptive differential evolution with sorting crossover rate for continuous optimization problems, IEEE T. Cybern., 47 (2017), 2742–2753. |
[13] | J. Hurink and S. Knust, Tabu search algorithms for job-shop problems with a single transport robot, Eur. J. Oper. Res., 162 (2005), 99–111. |
[14] | B. Naderi, M. Zandieh, A. K. G. Balagh, et al., An improved simulated annealing for hybrid flowshops with sequence-dependent setup and transportation times to minimize total completion time and total tardiness, Expert. Syst. Appl., 36 (2009), 9625–9633. |
[15] | M. Boudhar and A. Haned, Preemptive scheduling in the presence of transportation times, Comput. Oper. Res., 36 (2009), 2387–2393. |
[16] | B. Naderi, A. A. Javid and F. Jolai, Permutation flowshops with transportation times: Mathematical models and solution methods, Int. J. Adv. Manuf. Tech., 46 (2010), 631–647. |
[17] | A. Rossi, Flexible job shop scheduling with sequence-dependent setup and transportation times by ant colony with reinforced pheromone relationships, Int. J. Prod. Econ., 153 (2014), 253–267. |
[18] | S. Karimi, Z. Ardalan and B. Naderi, et al., Scheduling flexible job-shops with transportation times: Mathematical models and a hybrid imperialist competitive algorithm, Appl. Math. Model., 41 (2017), 667–682. |