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Abstract: In the practical production, after the completion of a job on a machine, it may be 

transported between the different machines. And, the transportation time may affect product quality 

in certain industries, such as steelmaking. However, the transportation times are commonly neglected 

in the literature. In this paper, the transportation time and processing time are taken as the 

independent time into the flexible job shop scheduling problem. The mathematical model of the 

flexible job shop scheduling problem with transportation time is established to minimize the 

maximum completion time. The FJSP problem is NP-hard. Then, an improved genetic algorithm is 

used to solve the problem. In the decoding process, an operation left shift insertion method according 

to the problem characteristics is proposed to decode the chromosomes in order to get the active 

scheduling solutions. The actual instance is solved by the proposed algorithm used the Matlab 

software. The computational results show that the proposed mathematical model and algorithm are 

valid and feasible, which could effectively guide the actual production practice. 

Keywords: flexible job shop scheduling problem; transportation time; genetic algorithm; active 

scheduling 

 

1. Introduction 

Production scheduling problems are very important in manufacturing systems. It could make 

effective production planning to improve the production efficiency. The job shop scheduling problem 

(JSP) is one of the most popular scheduling problems existing in practice. This problem consists in 

assigning a set of operations on a set of machines such as each operation must be processed on one 
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machine. However, as the flexibility of processing in the shop continues to increase, each machine 

could process multiple operations. That is, each operation could be processed by many different 

machines. Hence, this problem named flexible job shop scheduling problem (FJSP). FJSP is an 

extension of the classic JSP. In the FJSP, there are two sub problems: machine selection and 

operation sequencing. The FJSP is known to be strongly NP-hard. There are many research on 

swarm intelligence optimization algorithms for the flexible job shop scheduling problems, such as 

genetic algorithm (GA) [1–5], particle swarm optimization (PSO) [6,7], ant colony algorithm 

(ACO) [8], shuffled frog-leaping algorithm [9], teaching learning based optimization algorithm 

(TLBO) [10], virus optimization algorithm [11], and differential evolution [12]. 

This paper studies the FJSP with transportation time for the following reasons. In most of the 

existing literatures on FJSP, each job could be processed immediately on the next machine after it is 

completed on the previous machine. In other words, the transportation times between the machines 

are often neglected. However, the transportation times are possible to affect the quality of the product 

in some specific production fields. And, transportation times have a direct impact on the production 

cycle of the product in the actual production process. Hence, in this paper, the transportation time is 

considered in the mathematic model, and to be solved. 

At present, there are some research literatures considering the transportation times. Hurinkab [13] 

applied a novel simulated annealing to consider scheduling hybrid flowshop problems to minimize 

both total completion time and total tardiness. They integrated two realistic and practical assumptions 

which are sequence-dependent setup and transportation times into the problem. Naderi et al. [14] 

incorporated the sequence-dependent transportation times with a single-transporter system into the 

flow-shop. They proposed an adaptation of the simulated annealing algorithm to solve the problem. 

Boudhar and Haned [15] studied scheduling preemptive jobs on the identical parallel machines to 

minimize the total completion time. Several heuristic algorithms were presented and a high-quality 

lower-bound one was obtained considering the transportation of an interrupted job from a machine to 

another machine. Naderi et al. [16] considered the transportation times in the permutation flow-shops. 

They proposed six different models for the problem. Rossi and Andrea [17] proposed a swarm 

intelligence approach based on the disjunctive graph model to to schedule a manufacturing system 

with resource flexibility and separable setup times. Karimi et al. [18] proposed an adaptation of the 

imperialist competitive algorithm hybridized by a simulated annealing based local search to solve the 

problem. Overall, more literature about the transportation time focus on flow shop scheduling 

problem, but few on flexible job shop scheduling problem. 

In this paper, we develop a modified GA to solve the FJSP with transportation time. The 

mathematical model is established to minimize the maximum completion time. The instance from the 

actual production is solved through the proposed algorithm. The computational results show that the 

proposed mathematical model and algorithm are valid and feasible. 

The remainder of this paper is organized as follows. The problem description and mathematical 

model are presented in Section 2. The improved genetic algorithm is described in Section 3. The 

computational results are discussed in Section 4. Finally, Section 5 is the conclusion and addressed 

several promising research directions. 
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2. Problem description and mathematics modeling 

2.1. Problem description 

Flexible job shop scheduling problem (FJSP) could be described as: n jobs should be processed 

on m machines. Each job may have a different number of operations. Each operation could be 

processed by any machine out of the set of alternative machine set. Each operation is completed and 

the job is transported to the next machine. If the two continuous operations are not processed on the 

same machine, the transportation times between the different machines is necessary to considered. 

FJSP is an NP-hard combinatorial optimization problem which could not be solved in a polynomial 

time. The optimization objective is to get the minimum makespan with the processing time and 

transportation time. 

In this paper, further discussion on this problem is based on the following assumptions: 

(1) The same job can only be processed by one machine at the same time, and the job cannot be 

interrupted once it starts processing. 

(2) Each job could be processed more than once on the same machine. 

(3) Operations belonging to different jobs could be processed in parallel. 

(4) All the machine can be used at zero time. 

(5) All jobs can be processed at zero time. 

(6) The processing route of each job is fixed and known, that is, each operation will be sent to the 

next processing machine immediately after completion of processing, and the operation can be 

processed at this time. 

(7) The processing time will be different due to the difference of the selected processing machines, 

and the processing time is known. 

(8) The transportation time may be different between the different machines. 

2.2. Mathematical model 

The mathematical model is described as: The job set J = {J1, J2, J3,... Jg,... Jn}, Jg is the g job (g 

= 1, 2, 3,... n). Machine set M = {M1, M2, M3,... Mi,... Mm}, Mi is the i machine (i = 1, 2, 3,... m). Ojh 

denotes the h operation of the job j, and defines the Oj(h-1) as the previous operation of the Ojh, Oj'h' 

represents the previous operation of the machine where Ojh is processed. Fjh expresses the processing 

completion time of the job j. Tijh indicates the time required for the h operation of job j on the 

machine i. Sijh is the processing start time of the operation h of job j on machine i. Cijh is the end time 

of the operation h of the job j on the machine i. TransTimeie is the transportation time of the job 

between the machine Mi and the machine Me. Cj is the completion time of the job j. Cmax represents 

the maximum completion time in the completion time of all jobs. Considering the minimization of 

makespan, its objective functions and constraints are as follows: 

Cmax = min(            )        (1) 

Cijh = Sijh+Tijh           (2) 

Cijh−Cij’h’   Tijh           (3) 
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Eq 1 represents the expression of the total objective function, that is, the maximum completion 

time minimization; Eq 2 indicates that the completion time of the operation is equal to the sum of the 

operation starting time and the operation time; Eq 3 represents the resource constraints; Eq 4 

indicates that the starting time of the machine in the process (the opening time of the gap) is less than 

that of the process. The transportation time of the last operation is constrained by the transportation 

time. Otherwise, the processing procedure is constrained by the resources of the current processing 

machine. Therefore, if the connected operation of the same job is processed on the same machine, it 

is only constrained by machine resources. For the adjacent two operations in the same job, the 

transportation time is taken into account, instead of the process sequence constraint in the traditional 

machining model. 

For the convenience of understanding, Table 1 gives an example of a partial flexible job shop 

scheduling problem. The “-” in Table 1 indicates that the horizontal corresponding operation cannot 

be processed on a vertical corresponding machine. Table 2 gives the transportation time between the 

different machines. 

Table 1. An example of partial flexible job shop scheduling problem. 

Jobs Operations 
Processing time 

M1 M2 M3 M4 M5 

J1 
O11 4 3 - 5 2 

O12 4 - 3 - 5 

J2 

O21 - 5 - 4 - 

O22 3 2 6 - - 

O23 - 7 5 5 4 

J3 
O31 3 2 4 3 - 

O32 5 - 3 4 - 

Table 2. The transportation time between different machines. 

Machines 
Transportation time 

M1 M2 M3 M4 M5 

M1 0 2 3 2 4 

M2 2 0 3 4 3 

M3 3 3 0 5 2 

M4 2 4 5 0 1 

M5 4 3 2 1 0 

Figures 1, 2 represent Gantt charts without and with the transportation time, respectively 

according to the Tables 1 and 2. In Figure 2, the yellow box denotes the transportation time between 

the two different machines. T11 indicates the transportation time of the operation O11 from M5 to M1 

after the operation O11 is completed on M5. Obviously, the two figures are different. The makespan of 
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the problem without transportation time is much smaller than that of the problem with transportation 

time. However, the problem with transportation time is closer to the actual production. 

 

Figure 1. The Gantt chart without transportation time. 

 

Figure 2. The Gantt chart with transportation time. 

3. The proposed improved genetic algorithm 

3.1. Encoding and decoding 

When the genetic algorithm is used to solve the problem, encoding and decoding are the first 

problems to be solved in the genetic algorithm. The problem of scheduling jobs in FJSP could be 

decomposed into two sub-problems: the routing sub-problem, which is assigning each operation to a 

machine selected out of a set of capable machines and the scheduling sub-problem, which consists of 

sequencing the assigned operations on all machines in order to obtain a feasible schedule minimizing 

the predefined objective function. In this paper, we adopted the method of the encoding method 

in [1] to encode two sub problems onto a chromosome, that is, a feasible solution of FJSP. 
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(1) Machine selection part: this part of the chromosome length is equal to the sum number of all 

operations. Each gene value is presented in integer, from left to right in sequence according to 

the process sequence of processing jobs. Each integer indicates the sequence number of the 

current operation of processing the job in the alternative machine set. Taking Table 1 as an 

example, as shown in the left half of the Figure 3, the gene string 3-2-2-1-4-3-2 indicates that 

the process O11 is processed on the fourth machine in the alternative machines set, that is, the 

selected machine is M5. Operation O21 is processed on the second machine in the alternative 

machines set, that is, the selected machine is M4, and so on. 

(2) Operation sequencing part: The length of this part of the chromosome is equal to the total 

operations. Each gene is coded by the job number. The number of job shows the number of the 

work sequencing. As shown in the right half part of Figure 1, the gene string is 3-1-1-2-3-2-2, 

and the corresponding processing procedure is O31-O11-O12-O21-O32-O22-O23. 

 

Figure 3. Chromosome encoding. 

When decoding chromosomes, there are three kinds of scheduling, that is, semi-active 

scheduling, activity scheduling, and non-delayed scheduling. It has proved that the optimal 

scheduling values for regular performance measure exist in the active scheduling set. That is, in 

active scheduling, some processing procedures can be found to make it earlier. Because 

chromosomes contain two parts, namely machine selection sub problem and operation sequencing 

sub problem. First, machine selection is decode: Read the machine selection part from left to right, 

and convert it to machine sequence matrix Jm and time sequence matrix T. Jm(j, h) represents the 

machine number of the h operation of the j job, Jm(j,...) represents the arrangement of all machine 

numbers processed in priority according to the working procedure of the job, and T(j, h) represents the 

h processing time of the j job. Jm(j, h) is a one-to-one correspondence with T(j, h). It is shown that it is 

decoded in formula 5 and formula 6. 

Jm =  
  
   
               

          (5) 

T =  
  
   
               

           (6) 
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Secondly, the operation sequencing is decoded. The chromosome part of the operation is read in 

turn from left to right. The machine matrix and time matrix are decoded according to the machine 

selection part. And the processing machine and processing time corresponding to the processing 

procedure of each operation are obtained in turn. In order to ensure the generation of active 

scheduling after chromosome decoding, the operation left shift insertion method is applied to 

operation sequencing. The left shift insertion method is executed as follows: 

(1) If the job Ojh is the first process in machine Mi, it can be processed directly from the processing 

time of the previous operation Oj(h-1) plus the end of the job transportation time. 

(2) If operation Ojh is the first processing procedure of the job J, then the machining directly starts 

from the zero time of the machine Mi. Otherwise, look up all the interval idle time [TSi, TEi]. TSi 

indicates the start time of the idle time on the machine Mi, and the TEi indicates the end time of 

the idle time on the machine Mi. 

(3) Taking into account the transportation time, according to the formula 7, the earliest processing 

start time ta of the operation Ojh is obtained, which can satisfy the order constraint of the job 

processing procedure. 

ta = max{Fj(h-1) + TransTimeie, TSi}      (7) 

(4) According to the Eq 8, determine whether the interval idle time can satisfy the insertion 

condition. If the satisfaction is inserted into the current idle time section, as shown in Figure 4; 

otherwise, the machine Mi is processed on the machine in accordance with the time tb of Eq 9, 

in which the TMi represents the end time of the last machining process of the current machine 

Mi, as shown in Figure 5. 

ta + Tijh   TEi          (8) 

tb = max{Fj(h-1) + TransTimeie, TMi}       (9) 

According to the method presented above, the chromosome of the operation sequencing part is 

decoded until the end of the chromosome. 

 

Figure 4. ta + Tijh   TEi. 
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Figure 5. ta + Tijh   TEi. 

3.2. Initialization method 

The quality of the initial solution directly affects the solution quality and convergence speed of 

the genetic algorithm. Because FJSP not only solves machine selection sub-problem, but also solves 

the operation sequencing sub-problem. In this paper, the machine selection part uses integer random 

initialization method according to the characteristics of FJSP. That is, the value on each gene position 

of the machine selection part chromosome is randomly generated from the alternative machine set. 

The detailed description could be found in [2]. 

The operation sequencing part of each chromosome is also generated by random method. 

3.3. Crossover operator 

The purpose of crossover is to exchange the information between the parents and retain the 

excellent information in the parent generation to produce new individuals. In this way, it could 

effectively reduce the probability of producing the infeasible solutions and search for the new 

generation. Since each chromosome consists of two parts, different methods are designed for 

crossover operator. 

(1) Machine selection part: In order to ensure that the solution is still feasible solution after crossover 

operation, the multi-point crossover operation is adopted. That is, multiple crossover points are 

randomly selected, and two parents are used to exchange gene blocks. Figure 6 gives an example. 

(2) Operation sequencing part: This part is based on operation encoding, and it is easy to produce 

infeasible solutions by traditional crossover operation. The improved method is to randomly 

divide the jobs into two groups, and better retain good operation sequence information from the 

parent individual. The detailed description could be found in [2]. 



1342 

Mathematical Biosciences and Engineering  Volume 16, Issue 3, 1334–1347. 

 

Figure 6. The machine selection part crossover. 

3.4. Mutation operator 

Mutation operation is to increase the diversity of the population by changing the gene of each 

chromosome to produce a new individual. To some extent, improve the local search ability of genetic 

algorithm. Two different mutation operators are adopted for the two parts of the chromosome. 

(1) Machine selection part: A gene location is randomly selected from the chromosome, and then a 

machine is randomly selected from the corresponding alternative machine set to replace the 

machine at the current gene location. 

(2) Operation sequencing part: Interchange method is used. Two genes are randomly selected. Then, 

the values at the two gene positions are exchanged with each other. 

3.5. Selection operator 

Through crossover operation and mutation operation, there may be bad solutions in the 

population. The selection operation is adopted to keep good individuals alive with greater 

probability. And the number of the population remains unchanged, so as to improve the 

computational efficiency and accelerate the global convergence. The more commonly used selection 

operators are rank-based selection, roulette wheel selection, seed selection and tournament selection. 

The tournament selection method has been proved that it has better or fairly convergence and 

computational complexity compared with other selection operators. In our proposed algorithm, the 

tournament selection is adopted. The fitness of a number of individuals was selected from the 

population to be compared, and the individuals with high fitness were selected and placed in the 

cross pool to fill the crossover pool. 

4. Computational experiments and results 

According to the above improved genetic algorithm, we use Matlab7.0 software. The instance 

from the actual production is executed on a P4 CPU (1.9 GHz) and 4G memory with Window 7 PC 

operating system. The main parameters of the genetic algorithm are as follows: population size 40, 

crossover probability 0.8, mutation probability 0.6, and maximum number of iterations is 200. 
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Table 3 shows the FJSP instance of 9 jobs on 5 machines after an actual instance is simplified. The 

“-” in Table 3 indicates that the operation of the job cannot be processed on the corresponding machine. 

Table 3. An instance of FJSP. 

Job Operation 
Processing time 

M1 M2 M3 M4 M5 

J1 
O11 - 6 3 5 - 

O12 6 - 7 - 10 

J2 

O21 - 7 - 6 - 

O22 9 5 4 - - 

O23 - 8 6 9 7 

J3 

O31 11 - 9 9 6 

O32 - 7 6 8 - 

O33 5 - 6 - 5 

J4 

O41 5 6 6 9 - 

O42 8 - 11 10 - 

O43 10 13 - 9 7 

J5 
O51 - 7 8 7 - 

O52 9 - 6 - 6 

J6 

O61 9 - 8 10 11 

O62 6 - 6 - 6 

O63 10 11 7 5 - 

J7 
O71 - 7 - 10 8 

O72 6 - 9 3 10 

J8 

O81 7 8 8 - - 

O82 7 - 10 9 8 

O83 - 7 5 - 5 

Table 4 represents the transportation time between the different machines based on the example 

in Table 3. In Table 4, the number of rows represents the machine corresponding to the operation, 

and the number of columns represents the processing machine corresponding to the next operation of 

the job. 

Table 4. Transportation time between different machines. 

Machine M1 M2 M3 M4 M5 

M1 0 1 1.5 2.5 1.5 

M2 1 0 1 1.5 2 

M3 1.5 1 0 2 2.1 

M4 2.5 1.5 2 0 1.7 

M5 1.5 2 2.1 1.7 0 

In the actual production process, the transportation time between the different machines is 

existence. Hence, in this paper, the transportation time is added to the scheduling problem. As shown 
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in Figure 7, the optimal objective with transportation time is 32. And the Figure 8 is the Gantt chart 

of the FJSP without transportation time. The transportation time should be considered in the actual 

production for the entire production scheduling. The transportation time has a large impact on the 

final completion time. The pink box in Figure 7 represents the transportation time of each operation 

of each job. The other colors in Figure 7 represent the processing time of each operation on the 

corresponding machine. For example, the pink box of 701 on machine M5 indicates that the 

transportation time of the O71. That means that the first operation of the job J7 is processed on 

machine M5 and transported to the machine M4. The transportation time needs 1.7 unit time. 

 

Figure 7. The Gantt chart with transportation time. 

 

Figure 8. The Gantt chart without transportation time. 

As shown in Figure 9, the improved genetic algorithm is used to solve the FJSP convergence 
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curve with transportation time. The dotted line in Figure 9 represents the mean change curve of each 

generation of objective values, and the real line represents the change curve of the optimal solution 

for each generation. The convergence curve of the optimal value is a downward trend. However, the 

mean value does not clearly reflect the downward trend. This shows that the algorithm needs further 

improvement in future research. 

 

Figure 9. The convergence curve. 

5. Conclusion and future research 

In this research, the flexible job shop scheduling problem considering transportation time is 

solved. The mathematical model considering transportation time is established. An improved genetic 

algorithm based on the traditional genetic algorithm is proposed. In our proposed algorithm, the 

operation left shift insertion method is applied to decode the operation sequencing part. The 

improved genetic algorithm is realized by Matlab, and the performance of the computational results 

show that the proposed algorithm is feasible and effective. In the future research, the more effective 

optimization algorithm is designed according to characteristics of the flexible job shop scheduling 

problem with transportation time. 
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