This article contains some outcomes on fixed points for a graph preserving nonlinear contraction in a metric space endued with a transitive directed graph. Our results improved, enriched, and subsumed various known fixed point theorems. To argue for reliability of our results, we presented two examples. We concluded the manuscript to investigate a unique solution of a certain first-order boundary value problem by means of our results.
Citation: Doaa Filali, Mohammad Akram, Mohammad Dilshad. Nonlinear contractions on directed graphs with applications to boundary value problems[J]. AIMS Mathematics, 2024, 9(6): 15263-15275. doi: 10.3934/math.2024741
This article contains some outcomes on fixed points for a graph preserving nonlinear contraction in a metric space endued with a transitive directed graph. Our results improved, enriched, and subsumed various known fixed point theorems. To argue for reliability of our results, we presented two examples. We concluded the manuscript to investigate a unique solution of a certain first-order boundary value problem by means of our results.
[1] | D. W. Boyd, J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20 (1969), 458–467. https://doi.org/10.2307/2035677 doi: 10.2307/2035677 |
[2] | J. Matkowski, Integrable solutions of functional equations, Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1975. |
[3] | J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136 (2008), 1359–1373. |
[4] | S. M. A. Aleomraninejad, Sh. Rezapoura, N. Shahzad, Some fixed point results on a metric space with a graph, Topol. Appl., 159 (2012), 659–663. https://doi.org/10.1016/j.topol.2011.10.013 doi: 10.1016/j.topol.2011.10.013 |
[5] | F. Bojor, Fixed point of $\phi$-contraction in metric spaces endowed with a graph, Ann. Univ. Craiova Mat., 37 (2010), 85–92. https://doi.org/10.52846/ami.v37i4.374 doi: 10.52846/ami.v37i4.374 |
[6] | A. Nicolae, D. O'Regan, A. Petruşel, Fixed point theorems for singlevalued and multivalued generalized contractions in metric spaces endowed with a graph, Georgian Math. J., 18 (2011), 307–327. https://doi.org/10.1515/gmj.2011.0019 doi: 10.1515/gmj.2011.0019 |
[7] | K. Fallahi, A. Aghanians, Boyd and Wong's fixed point theorem in metric spaces endowed with a graph, Palest. J. Math., 6 (2017), 496–501. |
[8] | C. Chifu, G. Petruşel, Generalized contractions in metric spaces endowed with a graph, Fixed Point Theory Appl., 2012 (2012), 161. https://doi.org/10.1186/1687-1812-2012-161 doi: 10.1186/1687-1812-2012-161 |
[9] | M. R. Alfuraidan, M. Bachar, M. A. Khamsi, Almost monotone contractions on weighted graphs, J. Nonlinear Sci. Appl., 9 (2016), 5189–5195. https://doi.org/10.22436/jnsa.009.08.04 doi: 10.22436/jnsa.009.08.04 |
[10] | L. Balog, V. Berinde, M. Păcurar, Approximating fixed points of nonself contractive type mappings in Banach spaces endowed with a graph, An. Sti. U. Ovid. Co. Mat., 24 (2016) 27–43. https://doi.org/10.1515/auom-2016-0026 doi: 10.1515/auom-2016-0026 |
[11] | L. Balog, V. Berinde, Fixed point theorems for nonself Kannan type contractions in Banach spaces endowed with a graph, Carpathian J. Math., 32 (2016), 293–302. |
[12] | C. Vetro, F. Vetro, Metric or partial metric spaces endowed with a finite number of graphs: A tool to obtain fixed point results, Topol. Appl., 164 (2014), 125–137. https://doi.org/10.1016/j.topol.2013.12.008 doi: 10.1016/j.topol.2013.12.008 |
[13] | N. Boonsri, S. Saejung, Fixed point theorems for contractions of Reich type on a metric space with a graph, J. Fixed Point Theory Appl., 20 (2018), 84. https://doi.org/10.1007/s11784-018-0565-y doi: 10.1007/s11784-018-0565-y |
[14] | A. Petruşel, G. Petruşel, Fixed point results for multi-valued graph contractions on a set endowed with two metrics, Ann. Acad. Rom. Sci. Ser. Math. Appl., 15 (2023), 147–153. https://doi.org/10.56082/annalsarscimath.2023.1-2.147 doi: 10.56082/annalsarscimath.2023.1-2.147 |
[15] | M. Boudersa, H. Benseridi, Asymptotic analysis for the elasticity system with Tresca and maximal monotone graph conditions, J. Math. Comput. Sci., 29 (2023), 252–263. https://doi.org/10.22436/jmcs.029.03.04 doi: 10.22436/jmcs.029.03.04 |
[16] | R. Hooda, M. Kamra, A. Malik, Common fixed point results for three and four mappings on vector-$b$-metric space with a graph, Rend. Circ. Mat. Palermo II Ser., 72 (2023), 2721–2743. https://doi.org/10.1007/s12215-022-00810-2 doi: 10.1007/s12215-022-00810-2 |
[17] | F. E. Browder, W. V. Petrysyn, The solution by iteration of nonlinear functional equation in Banach spaces, Bull. Amer. Math. Soc., 72 (1966), 571–576. |
[18] | A. Petruşel, I. A. Rus, Fixed point theorems in ordered $L$-spaces, Proc. Amer. Math. Soc., 134 (2006), 411–418. |