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1. Introduction

The classical BCP (i.e., Banach contraction principle) is a vital and crucial result of the fixed point
theory in MS (i.e., metric space). In fact, BCP ensures that a contraction on a CMS (i.e., complete
metric space) owns a unique fixed point. Additionally, this result provides an iterative method for
computing the unique fixed point. Plenty of researchers have developed this result within the past
century. Some authors improved the ordinary contraction to ψ-contraction by controlling the
contraction map via a compatible self-function ψ on [0,+∞). There are so many variants of BCP
under ψ-contractions using some suitable choices ψ, and there has already been a lot of writing on this
particular topic. Boyd and Wong [1] and Matkowski [2] are primarily responsible for establishing two
well-known and classical fixed-point outcomes under ψ-contractions. On line with Boyd and
Wong [1], Ψ refers the set of functions ψ : [0,+∞) → [0,+∞) verifying ψ(r) < r and lim sup

t→r+
ψ(t) < r,

for all r > 0.
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Theorem 1.1. [1] If S is a self-map on a CMS (Y, σ) and there exists ψ ∈ Ψ verifying

σ(Sy,Sz) ≤ ψ(σ(y, z)), for all y, z ∈ Y,

then S possesses a unique fixed point.

The abovementioned contraction condition is named a ψ-contraction. In particular for ψ(r) = κ ·

r, 0 < κ < 1, ψ-contraction falls to contraction and Theorem 1.1 deduces the BCP.
Jachymski [3] presented a very intriguing approach in fixed-point theory by employing the

framework of metric spaces endowed with a graph. Graphs are algebraic structures, which subsume
the partial order. The key theme of Jachymski’s approaches is that the contraction condition requires
verifying on merely the edges of the graph. This led to the emergence of a new area in fixed-point
theory, which has seen a large number of publications. Several noteworthy references from these
publications include [4–16].

The results investigated in the present manuscript are fixed point results employing
the (G, ψ)-contractions in the setup of metric spaces endued with a transitive directed graph. We
illustrate our findings by adopting some examples. We provide an application to a BVP (i.e.,
boundary value problem) verifying some additional hypotheses.

2. Directed graphs and relevant concepts

This section deals with some notions related to graph theory. Again, we refer to the paper of
Jachymski [3]. A graph G is comprised of a nonempty set V(G) (referred to as vertex set or set of
vertices) and a set E(G) (referred to as edge set or set of edges) of pair of elements ofV(G). A graph
is referred to as directed graph or digraph if each edge is an ordered pair of vertices. A graph G is
represented by the pair (V(G),E(G)).

The conversion of a group G = (V(G),E(G)), denoted by G−1, is a graph determined by

V(G−1) = V(G),

and
E(G−1) = {(y, z) ∈ V(G) ×V(G) : (z, y) ∈ E(G)}.

Corresponding to a directed graph G = (V(G),E(G)), we can determine an undirected graph G̃ as
follows:

V(G̃) = V(G) and E(G̃) = E(G) ∪ E(G−1).

In fact, we can treat G̃ as a directed graph, whereas E(G̃) is symmetric.
Given a pair of vertices y and z in the graph G, a path in G from y to z of length p ∈ N is an ordered

set {y0, y1, y2, . . . yp} of vertices, which verifies y0 = y, yp = z, and (yk−1, yk) ∈ E(G), for every
k ∈ {1, 2, . . . p}. Moreover, a graph G in which every pair of vertices admits a path is named as
connected. Furthermore, if G̃ is connected, then G is named as weakly connected.

If y ∈ V(G), then we use the symbol [y]G defined as:

[y]G = {z ∈ V(G) : G admits a path from y to z}.
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One says that a graph H = (V(H),E(H)) is a subgraph of G = (V(G),E(G)) if

V(H) ⊆ V(G) and E(H) ⊆ E(G).

Let G = (V(G),E(G)) be a graph in which E(G) is symmetric, then for each y ∈ V(G), we can
determine a subgraph Gy whose edges and vertices are contained in a path with initial point y. Such a
subgraph is named as the component of G containing y. Henceforth, we have V(Gy) = [y]G.
Obviously, Gy is connected.

Definition 2.1. [3] One says that a MS (Y, σ) is endued with a graph G if

• V(G) = Y;
• all loops are contained in E(G);
• G admits no parallel edge.

Definition 2.2. [3] Assume that (Y, σ) is a MS endued with a graph G. We say that a map S : Y→ Y
is orbitally G-continuous, if for all y, ȳ ∈ Y and for every sequence {ni} of natural numbers, we have

lim
i→+∞
Sni(y) = ȳ and (Sniy,Sni+1y) ∈ E(G), for all i ∈ N =⇒ lim

i→+∞
S(Sniy) = S(ȳ).

Definition 2.3. [4] Let (Y, σ) be a MS endued with a graph G. We say that G is a (C)-graph if any
sequence {yn} ⊂ Y verifying yn → y and (yn, yn+1) ∈ E(G), for each n ∈ N, contains a
subsequence {ynk

},s which satisfies (ynk
, y) ∈ E(G), for every k ∈ N.

Definition 2.4. [5] Assume that (Y, σ) is a MS endued with a graphG. One says that a mapS : Y→ Y
is (G, ψ)-contraction if

(i) (y, z) ∈ E(G) =⇒ (Sy,Sz) ∈ E(G);
(ii) ψ : [0,+∞)→ [0,+∞) is an auxiliary function which verifies

σ(Sy,Sz) ≤ ψ(σ(y, z)) for each (y, z) ∈ E(G).

Definition 2.5. [9] A directed graph G verifying for any y, z,w ∈ V(G) with

(y, z) ∈ E(G) and (z,w) ∈ E(G) =⇒ (y,w) ∈ E(G).

is named as transitive.

3. Auxiliary results

We’ll utilize the following notions:

YS = {y ∈ Y : (y,Sy) ∈ E(G)},

and
Fix(S) = {y ∈ Y : S(y) = y}.

Proposition 3.1. Assume that (Y, σ) is a CMS endued with a directed graph G. If there exists ψ ∈ Ψ

such that S : Y→ Y is a (G, ψ)-contraction, then S is both a (G−1, ψ)-contraction as well as a (G̃, ψ)-
contraction.
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Proof. The result is a direct consequence of symmetric property of σ and the fact E(G̃) = E(G) ∪
E(G−1).

Definition 3.1. [17] A self-map S on a MS (Y, σ) is termed as asymptotically regular at point y ∈ Y
if

lim
n→+∞

σ(Sny,Sn+1y) = 0.

Lemma 3.1. Assume that (Y, σ) is a CMS endued with a directed graph G. If there exists ψ ∈ Ψ such
that S : Y→ Y is a (G, ψ)-contraction and YS , ∅, then S is asymptotically regular at every y ∈ YS.

Proof. Choose an arbitrary y ∈ YS, then, one has (y,Sy) ∈ E(G). By (G, ψ)-contraction condition of
S and easy induction, we obtain (Sny,Sn+1y) ∈ E(G). Denote yn := Sn(y), for each n ∈ N. Hence,
we conclude

(yn, yn+1) ∈ E(G), for every n ∈ N. (3.1)

Define σn := σ(yn, yn+1), for every n ∈ N. Employing (G, ψ)-contraction condition of S for (3.1), we
get

σ(yn, yn+1) = σ(Syn−1,Syn) ≤ ψ(σ(yn−1, yn)),

so that

σn ≤ ψ(σn−1) for every n ∈ N. (3.2)

If σn > 0 for all n ∈ N, then using the definition of ψ in (3.2), we get

σn ≤ ψ(σn−1) < σn−1, for every n ∈ N.

If σn = 0 for some n ∈ N, then 0 = σn ≤ σn−1. Thus, in both the cases, {σn} is a decreasing sequence
in [0,+∞), which is bounded below also; so there exists p ≥ 0 enjoying

lim
n→+∞

σn = p. (3.3)

Let p > 0. With the upper limit in (3.2) and by using (3.3) and the property of ψ, we obtain

p = lim sup
n→+∞

σn ≤ lim sup
n→+∞

ψ(σn−1) = lim sup
σn→p+

ψ(σn−1) < p,

which arises a contradiction. Therefore, p = 0 and, hence, we have

lim
n→+∞

σn = lim
n→+∞

σ(Sny,Sn+1y) = 0. (3.4)

Thus, S is asymptotically regular at every y ∈ YS.

Now, we indicate the following classical and well-known result.

Lemma 3.2. [1] Assume that {yn} is a sequence in a MS (Y, σ). If {yn} is not Cauchy, then ∃ε > 0 and
two subsequences {ynk

} and {ymk
} of {yn} verifying

k ≤ mk < nk, σ(ymk
, ynk

) > ε ≥ σ(ymk
, ynk−1

), for every k ∈ N. (3.5)

Further, if lim
n→+∞

σ(yn, yn+1) = 0, then
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(i) lim
k→+∞

σ(ymk
, ynk

) = ε;
(ii) lim

k→+∞
σ(ymk

, ynk+1) = ε;
(iii) lim

k→+∞
σ(ymk+1, ynk

) = ε;
(iv) lim

k→+∞
σ(ymk+1, ynk+1) = ε.

Lemma 3.3. Assume that (Y, σ) is a CMS endued with a transitive directed graph G. If there exists
ψ ∈ Ψ for which S : Y → Y is a (G, ψ)-contraction and YS , ∅, then for each y ∈ YS, there is
y∗(y) ∈ Y enjoying Sn(y) −→ y∗(y) as n→ +∞.

Proof. Let y ∈ YS and define yn := Sn(y), for every n ∈ N. We’ll establish that {yn} is Cauchy. On the
contrary, let {yn} be not Cauchy. By Lemma 3.2, ∃ε > 0 and subsequences {ynk

} and {ymk
} of {yn}, for

which (3.5) holds. Using the transitivity of G and (3.1), we have (ymk
, ynk

) ∈ E(G). Employing (G, ψ)-
contractivity of S, we conclude

σ(ymk+1, ynk+1) = σ(Symk
,Synk

) ≤ ψ(σ(ymk
, ynk

)),

so that
σ(ymk+1, ynk+1) ≤ ψ(σ(ymk

, ynk
)). (3.6)

Employing Lemma 3.1, we get lim
n→+∞

σ(yn, yn+1) = 0. Therefore, by Lemma 3.2, we obtain

lim
k→+∞

σ(ymk
, ynk

) = lim
k→+∞

σ(ymk+1, ynk+1) = ε. (3.7)

Using limit superior in (3.6) and by (3.7), we conclude

ε = lim sup
k→+∞

σ(ymk+1, ynk+1) ≤ lim sup
k→+∞

ψ(σ(ymk
, ynk

)),

which by using the property of ψ, yields that

ε ≤ lim sup
k→+∞

ψ(σ(ymk
, ynk

)) = lim sup
s→ε+

ψ(s) < ε,

which arises a contradiction so that {yn} is Cauchy. By completeness of (Y, σ), we can find y∗(y) ∈ Y
verifying yn

σ
−→ y∗(y).

Definition 3.2. [3] Two Cauchy sequences {yn} and {zn} in a MS (Y, σ) are called Cauchy equivalent
if

lim
n→+∞

σ(yn, zn) = 0.

Lemma 3.4. Assume that (Y, σ) is a MS endued with a graph G, then the following are equivalent:

(i) G is weakly connected;
(ii) if for some ψ ∈ Ψ, S : Y → Y is a (G, ψ)-contraction, then for every y, z ∈ Y, {Sny} and {Snz}

are Cauchy equivalent sequences;
(iii) if for some ψ ∈ Ψ, S : Y→ Y is a (G, ψ)-contraction, then card(Fix(S)) ≤ 1.
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Proof. (i) ⇒ (ii) Assume that S is a (G, ψ)-contraction and y, z ∈ Y. By (i), [y]G̃ = Y and, hence,
z ∈ [y]G̃. There exists a path {y0, y1, y2, . . . , yp} in G̃ from y to z, enjoying

y0 = y, yp = z and (yk, yk+1) ∈ E(G̃) for each k (0 ≤ k ≤ p − 1).

Using (G, ψ)-contraction condition and by induction, we get

(Snyk,S
nyk+1) ∈ E(G̃) for each k (0 ≤ k ≤ p − 1) and for each n ∈ N.

Now, for each k (0 ≤ k ≤ p − 1), define tk
n =: σ(Snyk,S

nyk+1) for every n ∈ N. We’ll establish that

lim
n→+∞

tk
n = 0. (3.8)

For each fixed k, we have two cases. To begin, assume that tk
n0
= σ(Sn0yk,S

n0yk+1) = 0 for some
n0 ∈ N, i.e., Sn0(yk) = Sn0(yk+1), which yields that Sn0+1(yk) = Sn0+1(yk+1). It follows that tk

n0+1 =

d(Sn0+1yk,S
n0+1yk+1) = 0. Using easy induction, we obtain tk

n = 0 for all n ≥ n0, thereby yielding
lim

n→+∞
tk
n = 0. In either case, we have tn > 0 for all n ∈ N, then by (G, ψ)-contraction condition of S

and Proposition 3.1, we get

tk
n+1 = σ(Sn+1yk,S

n+1yk+1)
≤ ψ(σ(Snyk,S

nyk+1))
= ψ(tk

n),

thereby yielding
tk
n+1 ≤ ψ(tk

n).

This yields that lim
n→+∞

tk
n = 0. Thus, in both the cases, (3.8) is proved for each k (0 ≤ k ≤ p − 1).

Employing (3.8) and the triangular inequality, we get

σ(Sny,Snz) = σ(Sny0,S
nyp) ≤ t0

n + t1
n + · · · + tp−1

n → 0 as n→ +∞.

In the same way, there is a path {z0, z1, z2, . . . , zl} in G̃ from y to S(y), so

z0 = y, yl = S(y) and (zk, zk+1) ∈ E(G̃) for each k (0 ≤ k ≤ l − 1).

Thus, we have
σ(Sny,Sn+1y)→ 0 as n→ +∞.

Likewise the proof of Lemma 3.1, we conclude that the sequences {Sny} and {Snz} are Cauchy.
Therefore, the sequences {Sny} and {Snz} are Cauchy equivalent.

(ii) ⇒ (iii) Assume that S is (G, ψ)-contraction and y, z ∈ Fix(S). In view of (ii), the
sequences {Sny} and {Snz} are Cauchy equivalent, thereby implying y = z.

(iii) ⇒ (i) Assume that G is not weakly connected, i.e., G̃ is not connected. Take y0 ∈ Y,
then, [y0]G̃ , ∅ and Y − [y0]G̃ , ∅. Let z0 ∈ Y − [y0]G̃. Define the operator θ : Y→ Y by

θ(y) =

y0, if y ∈ [y0]G̃,
z0, otherwise.
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Thus, Fix (θ) = {y0, z0}. Further, θ is a (G, ψ)-contraction. Indeed, if (y, z) ∈ E(G), then [y]G̃ = [z]G̃.
Therefore, y, z ∈ [y0]G̃ or y, z ∈ Y − [y0]G̃ . In both the cases, we conclude that θ(y) = θ(z). Hence,
(θy, θz) ∈ △ ⊂ E(G). Moreover, σ(θy, θz) = 0 ≤ ψ(σ(y, z)). Therefore, θ admits two fixed points,
which contradicts to (iii).

Lemma 3.5. Assume that (Y, σ) is a CMS endued with a directed graph G. If there exists ψ ∈ Ψ such
that S : Y→ Y is (G, ψ)-contraction for which there is some y0 ∈ Y such that S(y0) ∈ [y0]G̃, then

(i) [y0]G̃ is S-invariant;
(ii) S|[y0]G̃ is a (G̃y0

, ψ)-contraction;
(iii) for any y, z ∈ [y0]G̃, the sequences {Sny} and {Snz} are Cauchy equivalent.

Proof. (i) Take y ∈ [y0]G̃, then G̃ admits a path {y0, y1, y2, . . . yp} such that yp = y
and (yk−1, yk) ∈ E(G), for each k ∈ {1, 2, . . . p}. By Proposition 3.1, S is a (G̃, ψ)-contraction. This
implies that (Syk−1,Syk) ∈ E(G), for all k ∈ {1, 2, . . . p}. Hence, {Sy0,Sy1,Sy2, . . .Syp} forms a path
in G̃ from S(y0) to S(y). Thus, we conclude S(y) ∈ [Sy0]G̃. By hypothesis, we have S(y0) ∈ [y0]G̃,
i.e., [Sy0]G̃ = [y0]G̃ thereby yielding S(y) ∈ [y0]G̃. Hence [y0]G̃ is S-invariant.

(ii) Take (y, z) ∈ E(G̃), then G̃ admits a path {y0, y1, y2, . . . yp−1 = y, yp = z} such that (yk−1, yk) ∈
E(G̃), for all k ∈ {1, 2, . . . p}. By (G, ψ)-contraction condition, we get (Syk−1,Syk) ∈ E(G̃), for all
k ∈ {1, 2, . . . p}. Let {z0, z1, z2, . . . zl−1, zl} be a path between y0 and S(y0). Hence

{y0 = z0, z1, z2, . . . zl−1, zl = Sy0,Sy1,Sy2, . . .Syp−1 = Sy,Syp = Sz}

forms a path in G̃ from y0 to S(z) enjoying (Sy,Sz) ∈ E(G̃). Since E(G̃y0
) ⊂ E(G̃) and S is a (G, ψ)-

contraction, S|[y0]G̃ is a (G̃y0
, ψ)-contraction.

(iii) As G̃y0
is connected, the conclusion is immediate in view of items (i) and (iii) of Lemma 3.4.

We conclude this section to revisit the following notions of existing literature.

Definition 3.3. [18] One says that a self-map S on a MS (Y, σ) is

• a PO (i.e., Picard operator) if S enjoys a unique fixed point y∗ and Sn(y)→ y∗, for all y ∈ Y;
• a WPO (i.e., weakly Picard operator) if Fix(S) , ∅ and {Sny} converges to a fixed point of S,

for all y ∈ Y.

4. Main results

We’ll present two fixed point theorems for a (G, ψ)-contraction self-map in a CMS endued with a
transitive graph.

Theorem 4.1. Assume that (Y, σ) is a CMS endued with a transitive directed graph G, which is
also (C)-graph. If there exists ψ ∈ Ψ such that S : Y→ Y is a (G, ψ)-contraction, then

(I) Fix(S) , ∅ if and only if YS , ∅;
(II) S is a PO whenever YS , ∅ and G remains weakly connected;

(III) for any y ∈ YS, S|[y]G̃ is a PO;
(IV) S is a WPO whenever Y = YS.
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Proof. We’ll first prove the statement (III). Take y ∈ YS, then S(y) ∈ [y]G̃. By Lemma 3.3, we can
determine y∗ ∈ Y enjoying lim

n→+∞
Sn(y) = y∗. Now, take z ∈ [y]G̃, then owing to Lemma 3.5, {Sny}

and {Snz} are Cauchy equivalent. It follows that lim
n→+∞

Sn(z) = y∗.
By (C)-graph property of G, {yn} contains a subsequence {ynk

} enjoying (ynk
, y∗) ∈ E(G), for all

k ∈ N. Owing to (G, ψ)-contraction condition of S, one gets

σ(ynk+1,Sy∗) = σ(Synk
,Sy∗) ≤ ψ(σ(ynk

, y∗)).

Now, we claim that
σ(ynk+1,Sy∗) ≤ σ(ynk

, y∗). (4.1)

If there is k0 ∈ N for which σ(ynk0
, y∗) = 0, then one gets σ(Synk0

,Sy∗) = 0, i.e., σ(ynk0+1,Sy∗) = 0
and therefore (4.1) holds for these k0 ∈ N. Otherwise, we have σ(ynk

, y∗) > 0, for all k ∈ N. Utilizing
the definition of ψ, one gets ψ(σ(ynk

, y∗)) < σ(ynk
, y∗), for every k ∈ N. Thus (4.1) holds for every

k ∈ N. Using the limit in (4.1) and by ynk

σ
−→ y∗, we get ynk+1

σ
−→ S(y∗). This yields that S(y∗) =

y∗. Thus, S|[y]G̃ is a PO. Hence the conclusion (I) is verified. By weakly connectedness of G, one
has [y]G̃ = Y and hence (II) follows from (III).

From (III), it follows that Fix(S) , ∅ if YS , ∅. Now assume that Fix(S) , ∅. Due to △ ⊆ E(G),
we conclude that YS , ∅. Therefore, the conclusion (I) holds.

If Y = YS, then in view of (III), we conclude that lim
n→+∞

Sn(y) ∈ Fix(S), for any y ∈ Y.
Consequently, S is a WPO and (IV) is proved.

Theorem 4.2. Assume that (Y, σ) is a CMS endued with a transitive directed graph G and S : Y→ Y
is an orbitally G-continuous mapping. If for some ψ ∈ Ψ, S is (G, ψ)-contraction, then

(I) Fix(S) , ∅ if and only if YS , ∅;
(II) S is a PO whenever YS , ∅ and G remains weakly connected;

(III) for any y ∈ YS and z ∈ [y]G̃, lim
n→∞
Sn(z) ∈ Fix(S) and, lim

n→+∞
Sn(z) does not depend on z;

(IV) S is a WPO whenever Y = YS.

Proof. We’ll first prove the conclusion (III). Take y ∈ YS and z ∈ [y]G̃. Due to Lemma 3.5, we
conclude that {Sny} and {Snz} converge to the same point x∗. Also, we have (Sny,Sn+1y) ∈ E(G),
for every n ∈ N. Employing the orbitally G-continuity of S, we obtain Sn+1(y) = S(Sny)

σ
−→ S(y∗).

Consequently, we have S(y∗) = y∗.
The conclusion (I) follows from (III) and △ ⊂ E(G). (IV) remains an immediate consequence

of (III). To prove (II), let us assume that y0 ∈ YS, then [y0]G̃ = Y. Therefore, in view of (III), S is
a PO.

To demonstrate our outcomes, we provide the following examples.

Example 4.1. Let Y = [1, 3] with standard metric σ, then (Y, σ) is a CMS. Endow a directed graph G
on Y by E(G) = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}, then G is transitive. Assume that {yn} ⊂ Y is
sequence verifying (yn, yn+1) ∈ E(G), for all n ∈ N and yn

σ
−→ y . As (yn, yn+1) < {(1, 3), (2, 3)}, we

have (yn, yn+1) ∈ {(1, 1), (1, 2), (2, 1), (2, 2)}, for every n ∈ N and, hence, {yn} ⊂ {1, 2}. By closedness
of {1, 2}, we get (yn, y) ∈ E(G). Consequently, G is a (C)-graph.
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Let S : Y→ Y be a map by

S(y) =

1 if 1 ≤ y ≤ 2,
2 if 2 < y ≤ 3.

Define the function ψ(s) = s/3, then ψ ∈ Ψ. It is unambiguously accessible that S is a (G, ψ)-
contraction and that G is weakly connected. Hence by Theorem 4.1, S is a PO so that y∗ = 1 is a
unique fixed point.

Example 4.2. Let Y = [0,+∞) with standard metric σ, then (Y, σ) is a CMS. Endow a directed graph
G on Y by E(G) := {(y, z) ∈ Y2 : y > z}, then G is transitive. Let S : Y → Y be a map defined by
S(y) = y/(y + 1), then S is orbitally G-continuous.

Define the function ψ(s) = s/(1 + s), then ψ ∈ Ψ. Now, for all (y, z) ∈ E(G), we have (Sy,Sz) ∈
E(G) and

σ(Sy,Sz) =
∣∣∣∣∣ y
y + 1

−
z

z + 1

∣∣∣∣∣ = ∣∣∣∣∣ y − z
1 + y + z + yz

∣∣∣∣∣
≤

y − z
1 + (y − z)

=
σ(y, z)

1 + σ(y, z)
≤ ψ(σ(y, z)).

Thus, S is a (G, ψ)-contraction. It is unambiguously accessible that G is weakly connected. Hence, by
Theorem 4.2, S is a PO so that y∗ = 0 is a unique fixed point.

5. An application to BVP

This section deals with the following BVP:ϑ′(s) = ζ(s, ϑ(s)), s ∈ [a, b],
ϑ(a) = ϑ(b),

(5.1)

where ζ : [a, b] × R → R is a continuous function. Φ will indicate the class of increasing continuous
functions ψ : [0,+∞)→ [0,+∞), which verify ψ(s) < s, for every s > 0. Observe that Φ ⊂ Ψ.

We say that ϑ̃ ∈ C′[a, b] is a lower solution of (5.1) ifϑ̃′(s) ≤ ζ(s, ϑ̃(s)), s ∈ [a, b],
ϑ̃(a) ≤ ϑ̃(b).

Theorem 5.1. In addition to the Problem (5.1), assume that there exists l > 0 and ψ ∈ Φ satisfying

0 ≤ [ζ(s, β) + lβ] − [ζ(s, α) + lα] ≤ lψ(β − α), for any α, β ∈ R with α ≤ β. (5.2)

If the Problem (5.1) has a lower solution, then it enjoys a unique solution.

Proof. We can re-express the Eq (5.1) in the following formϑ′(s) + lϑ(s) = ζ(s, ϑ(s)) + lϑ(s), for every s ∈ [a, b],
ϑ(a) = ϑ(b),
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which is equivalent to

ϑ(s) =
∫ b

a
Λ(s, τ)[ζ(τ, ϑ(τ)) + lϑ(τ)]dτ, (5.3)

where Λ(s, τ) is the Green function so that

Λ(s, τ) =

 el(b+τ−s)

elb−1 , 0 ≤ τ < s ≤ b,
el(τ−s)

elb−1 , 0 ≤ s < τ ≤ b.

Let Y := C[a, b]. Define the map S : Y→ Y by

(Sϑ)(s) =
∫ b

a
Λ(s, τ)[ζ(τ, ϑ(τ)) + lϑ(τ)]dτ, for all s ∈ [a, b]. (5.4)

On Y, equip directed graph G defined by

E(G) = {(ϑ, ω) ∈ Y × Y : ϑ(s) ≤ ω(s), for every s ∈ [a, b]}. (5.5)

If ϑ̃ ∈ C′[a, b] is a lower solution of (5.1), then we have

ϑ̃′(s) + lϑ̃(s) ≤ ζ(s, ϑ̃(s)) + lϑ̃(s), for all s ∈ [a, b].

Multiplying the above inequality by els, we obtain

(ϑ̃(s)els)′ ≤ [ζ(s, ϑ̃(s)) + lϑ̃(s)]els, for all s ∈ [a, b],

which yields

ϑ̃(s)els ≤ ϑ̃(a) +
∫ s

a
[ζ(τ, ϑ̃(τ)) + lϑ̃(τ)]elτdτ, for each s ∈ [a, b]. (5.6)

Employing ϑ̃(a) ≤ ϑ̃(b), we get

ϑ̃(a)elb ≤ ϑ̃(b)elb ≤ ϑ̃(a) +
∫ b

a
[ζ(τ, ϑ̃(τ)) + lϑ̃(τ)]elτdτ,

i.e.,

ϑ̃(a) ≤
∫ b

a

elτ

elb − 1
[ζ(τ, ϑ̃(τ)) + lϑ̃(τ)]dτ. (5.7)

By (5.6) and (5.7), we get

ϑ̃(s)els ≤

∫ b

a

elτ

elb − 1
[ζ(τ, ϑ̃(τ)) + lϑ̃(τ)]dτ +

∫ s

a
elτ[ζ(τ, ϑ̃(τ)) + lϑ̃(τ)]dτ

=

∫ s

a

el(b+τ)

elb − 1
[ζ(τ, ϑ̃(τ)) + lϑ̃(τ)]dτ +

∫ b

s

elτ

elb − 1
[ζ(τ, ϑ̃(τ)) + lϑ̃(τ)]dτ,

which yields

ϑ̃(s) ≤
∫ s

a

el(b+τ−s)

elb − 1
[ζ(τ, ϑ̃(τ)) + lϑ̃(τ)]dτ +

∫ b

s

el(τ−s)

elb − 1
[ζ(τ, ϑ̃(τ)) + lϑ̃(τ)]dτ
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=

∫ b

a
Λ(s, τ)[ζ(τ, ϑ̃(τ)) + lϑ̃(τ)]dτ

= (Sϑ̃)(s), for all s ∈ [a, b],

which implies that (ϑ̃,Sϑ̃) ∈ E(G). Thus, ϑ̃ ∈ YS, i.e., YS , ∅.
Now, let ϑ, ω ∈ Y be chosen arbitrarily. Let u := max{ϑ, v}, then one has (ϑ, u) ∈ E(G) and (v, u) ∈

E(G). This yields that G̃ is connected, i.e., G is weakly connected.
Define the following metric on Y:

σ(ϑ, ω) = sup
s∈[a,b]

|ϑ(s) − ω(s)|, for all ϑ, ω ∈ Y. (5.8)

Clearly (Y, σ) is complete. To substantiate thatG is a (C)-graph, let {ϑn} ⊂ Y be a sequence converging
to ϑ ∈ Y and verifying (yn, yn+1) ∈ E(G), for all n ∈ N. This implies that ϑn(s) ≤ ϑ(s), for all n ∈ N
and for all s ∈ [a, b]. By (5.5), we have (ϑn, ϑ) ∈ E(G), for all n ∈ N. This shows that G is
a (C)-graph.

Finally, let (ϑ, ω) ∈ E(G). By (5.2), we obtain

ζ(s, ϑ(s)) + lϑ(s) ≤ ζ(s, ω(s)) + lω(s), for all s ∈ [a, b]. (5.9)

By (5.4), (5.9), and Λ(s, τ) > 0, for all s, τ ∈ [a, b], we get

(Sϑ)(s) =
∫ b

a
Λ(s, τ)[ζ(τ, ϑ(τ)) + lϑ(τ)]dτ

≤

∫ b

a
Λ(s, τ)[ζ(τ, ω(τ)) + lω(τ)]dτ

= (Sω)(s), for all s ∈ [a, b],

which in view of (5.5) yields that (Sϑ,Sω) ∈ E(G). Again, by using (5.2), (5.4), and (5.8), we get

σ(Sϑ,Sω) = sup
s∈[a,b]

|(Sϑ)(s) − (Sω)(s)| = sup
s∈[a,b]

(
(Sω)(s) − (Sϑ)(s)

)
≤ sup

s∈[a,b]

∫ b

a
Λ(s, τ)[ζ(τ, ω(τ)) + lω(τ) − ζ(τ, ϑ(τ)) − lϑ(τ)]dτ

≤ sup
s∈[a,b]

∫ b

a
Λ(s, τ)lψ(ω(τ) − ϑ(τ))dτ. (5.10)

Observe 0 ≤ ω(τ) − ϑ(τ) ≤ σ(ϑ, ω). Hence, by monotonicity of ψ, we get

ψ(ω(τ) − ϑ(τ)) ≤ ψ(σ(ϑ, ω)).

Hence, (5.10) reduces to

σ(Sϑ,Sω) ≤ lψ(σ(ϑ, ω)) sup
s∈[a,b]

∫ b

a
Λ(s, τ)dτ

= lψ(σ(ϑ, ω)) sup
s∈[a,b]

1
elb − 1

[1
l
el(b+τ−s)

∣∣∣∣s
0
+

1
l
el(τ−s)

∣∣∣∣b
s

]
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= lψ(σ(ϑ, ω))
1

l(elb − 1)
(elb − 1)

= ψ(σ(ϑ, ω)),

so that

σ(Sϑ,Sω) ≤ ψ(σ(ϑ, ω)), for all (ϑ, ω) ∈ E(G).

Therefore, S is a (G, ψ)-contraction. Consequently, by Theorem 4.1, S is PO. Thus, the unique fixed
point of S forms the unique solution of (5.1).

6. Conclusions

In 2010, Bojor [5] established the fixed point results under a (G, ψ)-contraction due to
Matkowski [2]. In this work, we employed a (G, ψ)-contraction involving control function of Boyd
and Wong [1]. Applying our outcomes, we discussed the existence and uniqueness of solution of
BVP (5.1), whereas a lower solution of the BVP exists. Our results generalized and extended the
results of Jachymski [3] and Fallahi and Aghanians [7]. In the future, our results can be generalized
for (G, ψ, ϕ)-contraction, employing a pair of control functions.
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