In this paper, we investigate a class of competitive and cooperative Nicholson's blowfly equations. By applying the Lyapunov functional and analysis technique, the conditions for the existence and exponential convergence of a positive almost periodic solution are derived. Moreover, an example and numerical simulation for justifying the theoretical analysis are also provided.
Citation: Wentao Wang. Positive almost periodic solution for competitive and cooperative Nicholson's blowflies system[J]. AIMS Mathematics, 2024, 9(5): 10638-10658. doi: 10.3934/math.2024519
In this paper, we investigate a class of competitive and cooperative Nicholson's blowfly equations. By applying the Lyapunov functional and analysis technique, the conditions for the existence and exponential convergence of a positive almost periodic solution are derived. Moreover, an example and numerical simulation for justifying the theoretical analysis are also provided.
[1] | A. J. Nicholson, An outline of the dynamics of animal populations, Aust. J. Zool., 2 (1954), 9–65. https://doi.org/10.1071/ZO9540009 doi: 10.1071/ZO9540009 |
[2] | W. S. C. Gurney, S. P. Blythe, R. M. Nisbet, Nicholsons blowflies revisited, Nature, 287 (1980), 17–21. https://doi.org/10.1038/287017a0 doi: 10.1038/287017a0 |
[3] | T. Faria, Periodic solutions for a non-monotone family of delayed differential equations with applications to Nicholson systems, J. Differ. Equations, 263 (2017), 509–533. https://doi.org/10.1016/j.jde.2017.02.042 doi: 10.1016/j.jde.2017.02.042 |
[4] | C. Huang, J. Wu, Global exponential stability analysis for tick population model with delayed sub-linear Gamma-Ricker nonlinearities, J. Differ. Equations, 355 (2023), 369–385. https://doi.org/10.1016/j.jde.2022.12.025 doi: 10.1016/j.jde.2022.12.025 |
[5] | C. Huang, X. Ding, Dynamics of the diffusive Nicholson's blowflies equation with two distinct distributed delays, Appl. Math. Lett., 145 (2023), 108741. https://doi.org/10.1016/j.aml.2023.108741 doi: 10.1016/j.aml.2023.108741 |
[6] | X. Long, S. Gong, New results on stability of Nicholson's blowflies equation with multiple pairs of time-varying delays, Appl. Math. Lett., 100 (2020), 10627. https://doi.org/10.1016/j.aml.2019.106027 doi: 10.1016/j.aml.2019.106027 |
[7] | F. Ch$\acute{e}$rif, Pseudo almost periodic solution of Nicholson's blowflies model with mixed delays, Appl. Math. Model., 39 (2015), 10627. http://dx.doi.org/10.1016/j.apm.2015.03.043 doi: 10.1016/j.apm.2015.03.043 |
[8] | X. Zhao, C. Huang, B. Liu, J. Cao, Stability analysis of delay patch-constructed Nicholson's blowflies system, Math. Comput. Simulat., 2024, 10627. (in press). https://doi.org/10.1016/j.matcom.2023.09.012 |
[9] | C. Huang, B. Liu, Traveling wave fronts for a diffusive Nicholson's Blowflies equation accompanying mature delay and feedback delay, Appl. Math. Lett., 134 (2022), 108321. https://doi.org/10.1016/j.aml.2022.108321 doi: 10.1016/j.aml.2022.108321 |
[10] | J. Sugie, Y. Yan, M. Qu, Effect of decimation on positive periodic solutions of discrete generalized Nicholson's blowflies models with multiple time-varying delays, Commun. Nonlinear Sci. Numer. Simulat., 97 (2021), 105731. https://doi.org/10.1016/j.cnsns.2021.105731 doi: 10.1016/j.cnsns.2021.105731 |
[11] | W. Chen, B. Liu, Positive almost periodic solution for a class of Nicholson's blowflies model with multiple time-varying delays, J. Comput. Appl. Math., 235 (2011), 2090–2097. https://doi.org/10.1016/j.cam.2010.10.007 doi: 10.1016/j.cam.2010.10.007 |
[12] | W. Xiong, New results on positive pseudo-almost periodic solutions for a delayed Nicholson's blowflies model, Nonlinear Dynam., 85 (2016), 653–571. https://doi.org/10.1007/s11071-016-2706-4 doi: 10.1007/s11071-016-2706-4 |
[13] | C. Xu, M. Liao, P. Li, Q. Xiao, S. Yuan, A new method to investigate almost periodic solutions for an Nicholson's blowflies model with time-varying delays and a linear harvesting term, Math. Biosci. Eng., 16 (2019), 3830–3840. https://doi.org/10.3934/mbe.2019189 doi: 10.3934/mbe.2019189 |
[14] | C. Huang, H. Zhang, L. Huang, Almost periodicity analysis for a delayed Nicholson's blowflies model with nonlinear density-dependent mortality term, Commun. Pure Appl. Anal., 18 (2019), 3337–3349. https://doi.org/10.3934/cpaa.2019150 doi: 10.3934/cpaa.2019150 |
[15] | W. Chen, W. Wang, Almost periodic solutions for a delayed Nicholson's blowflies system with nonlinear density-dependent mortality terms and patch structure, Adv. Differ. Equ., 205 (2014). https://doi.org/10.1186/1687-1847-2014-205 doi: 10.1186/1687-1847-2014-205 |
[16] | C. Huang, B. Liu, H. Yang, J. Cao, Positive almost periodicity on SICNNs incorporating mixed delays and D operator, Nonlinear Anal.-Model., 27 (2022), 719–739. https://doi.org/10.15388/namc.2022.27.27417 doi: 10.15388/namc.2022.27.27417 |
[17] | C. Huang, X. Ding, Existence of traveling wave fronts for a diffusive Mackey-Glass model with two delays, Nonlinear Anal.-Real, 76 (2024), 104024. https://doi.org/10.1016/j.nonrwa.2023.104024 doi: 10.1016/j.nonrwa.2023.104024 |
[18] | Y. Chen, Periodic solutions of delayed periodic Nicholson's blowflies models, Can. Appl. Math. Q., 11 (2003), 23–28. |
[19] | E. Braverman, D. Kinzebulatov, Nicholson's blowflies equation with a distributed delay, Can. Appl. Math. Q., 14 (2006), 107–128. |
[20] | J. Li, C. Du, Existence of positive periodic solutions for a generalized Nicholson blowflies model, J. Comput. Appl. Math., 221 (2008), 226–233. https://doi.org/10.1016/j.cam.2007.10.049 doi: 10.1016/j.cam.2007.10.049 |
[21] | W. T. Li, Y. H. Fan, Existence and global attractivity of positive periodic solutions for the impulsive delay Nicholson's blowflies model, J. Comput. Appl. Math., 201 (2007), 55–68. https://doi.org/10.1016/j.cam.2006.02.001 doi: 10.1016/j.cam.2006.02.001 |
[22] | L. Berezansky, E. Braverman, L. Idels, Nicholson's blowflies differential equations revisited: Main results and open problems, Appl. Math. Model., 34 (2010), 1405–1417. https://doi.org/10.1016/j.apm.2009.08.027 doi: 10.1016/j.apm.2009.08.027 |
[23] | W. Zhao, C. Zhu, H. Zhu, On positive periodic solution for the delay Nicholson's blowflies model with a harvesting term, Appl. Math. Model., 36 (2012), 3336–3340. https://doi.org/10.1016/j.apm.2011.10.011 doi: 10.1016/j.apm.2011.10.011 |
[24] | H. Zhou, Z. Zhou, Z. Qiao, Mean-square almost periodic solution for impulsive stochastic Nicholson's blowflies model with delays, Appl. Math. Comput., 219 (2013), 5943–5948. https://doi.org/10.1016/j.amc.2012.12.005 doi: 10.1016/j.amc.2012.12.005 |
[25] | P. Amster, A. D$\acute{e}$boli, Existence of positive T-periodic solutions of a generalized Nicholson's blowflies model with a nonlinear harvesting term, Appl. Math. Lett., 25 (2012), 1203–1207. https://doi.org/10.1016/j.aml.2012.02.040 doi: 10.1016/j.aml.2012.02.040 |
[26] | F. Long, Positive almost periodic solution for a class of Nicholson's blowflies model with a linear harvesting term, Nonlinear Anal.-Real, 13 (2012), 686–693. https://doi.org/10.1016/j.nonrwa.2011.08.009 doi: 10.1016/j.nonrwa.2011.08.009 |
[27] | J. O. Alzabut, Almost periodic solutions for an impulsive delay Nicholson's blowflies model, J. Comput. Appl. Math., 234 (2010), 233–239. https://doi.org/10.1016/j.cam.2009.12.019 doi: 10.1016/j.cam.2009.12.019 |
[28] | W. Wang, Positive periodic solutions of delayed Nicholson's blowflies models with a nonlinear density-dependent mortality term, Appl. Math. Model., 36 (2012), 4708–4713. https://doi.org/10.1016/j.apm.2011.12.001 doi: 10.1016/j.apm.2011.12.001 |
[29] | W. Chen, L. Wang, Positive periodic solutions of Nicholson-type delay systems with nonlinear density-dependent mortality terms, Abstr. Appl. Anal., 2012 (2012), 843178. https://doi.org/10.1155/2012/843178 doi: 10.1155/2012/843178 |
[30] | W. Wang, Exponential extinction of Nicholson's blowflies system with nonlinear density-dependent mortality terms, Abstr. Appl. Anal., 2012 (2012), 302065. https://doi.org/10.1155/2012/302065 doi: 10.1155/2012/302065 |
[31] | B. Liu, Global stability of a class of delay differential systems, J. Comput. Appl. Math., 233 (2009), 217–223. https://doi.org/10.1016/j.cam.2009.07.024 doi: 10.1016/j.cam.2009.07.024 |
[32] | L. Berezansky, L. Idels, L. Troib, Global dynamics of Nicholson-type delay systems with applications, Nonlinear Anal.-Real, 12 (2011), 436–445. https://doi.org/10.1016/j.nonrwa.2010.06.028 doi: 10.1016/j.nonrwa.2010.06.028 |
[33] | M. Sotomayor, Connecting the cooperative and competitive structures of the multiple-partners assignment game, J. Econom. Theory, 134 (2007), 155–174. https://doi.org/10.1016/j.jet.2006.02.005 doi: 10.1016/j.jet.2006.02.005 |
[34] | K. Yuan, J. Cao, Periodic oscillatory solution in delayed competitive-cooperative neural networks: A decomposition approach, Chaos Soliton. Fract., 27 (2006), 223–231. https://doi.org/10.1016/j.chaos.2005.04.016 doi: 10.1016/j.chaos.2005.04.016 |
[35] | G. Lv, M. Wang, Traveling wave front in diffusive and competitive Lotka-Volterra system with delays, Nonlinear Anal.-Real, 11 (2010), 1323–1329. https://doi.org/10.1016/j.nonrwa.2009.02.020 doi: 10.1016/j.nonrwa.2009.02.020 |
[36] | T. Chu, Z. Zhang, Z. Wang, A decomposition approach to analysis of competitive cooperative neural networks with delay, Phys. Lett. A, 312 (2003), 339–347. https://doi.org/10.1016/S0375-9601(03)00692-3 doi: 10.1016/S0375-9601(03)00692-3 |
[37] | P. Liu, S. N. Elaydi, Discrete competitive and cooperative models of Lotka-Volterra type, J. Comput. Anal. Appl., 3 (2001), 53–73. https://doi.org/10.1023/A:1011539901001 doi: 10.1023/A:1011539901001 |
[38] | L. Huang, T. Yi, X. Zou, On dynamic of generalized competitive and cooperative systems, Tohoku Math. J., 58 (2006), 89–100. https://doi.org/10.2748/tmj/1145390207 doi: 10.2748/tmj/1145390207 |
[39] | A. M. Fink, Almost periodic differential equations, lecture notes in mathematics, Berlin: Springer, 377 (1974). |
[40] | C. Y. He, Almost periodic differential equation, Beijing: Higher Education Publishing House, 1992, (in Chinese). |
[41] | A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical science, New York: Academic Press, 1979. |
[42] | J. P. Lasalle, The stability of dynamical system, Philadelphia: SIAM, 1976. |
[43] | H. L. Smith, The Monotone dynamical systems, in: Math. Surveys Monogr, Providence: American Mathematical Society, 1995. |
[44] | J. K. Hale, S. M. V. Lunel, Introduction to functional differential equations, New York: Springer-Verlag, 1993. |