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1. Introduction

Based on the experimental data which were observed and summarized by Nicholson [1], Gurney et
al. [2] presented a classic biological dynamical system model

N'(t) = —=6N(t) + pN(t — T)e N, (1.1)

Here, N(¢) is the size of the population at time #, p is the maximum per capita daily egg production,
é is the size at which the population reproduces at its maximum rate, ¢ is the per capita daily adult
death rate, and 7 is the generation time. The research on the Nicholson’s blowfly model and its
modifications has realized a remarkable progress in the past fifty years and an abundance of results on
the existence of positive solutions, persistence, oscillation, stability, periodic solutions, almost periodic
solutions, pseudo almost periodic solutions, etc. (see [3-21]) have been obtained. Furthermore,
Berezansky et al. [22] systematically collected and compared the results in the above-mentioned
studies and put forward several open problems that have been partially answered in recent works [23—
30], such as Nicholson’s blowfly model with impulsive perturbation, harvesting term and nonlinear
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density-dependent mortality term. On the other hand, Liu [31] considered the following cooperative
Nicholson’s blowfly equation with a patch structure:
X)(t) = Z a;ix (1) + Bxi(t — r)e ™ — dixi(t), i=1,2,-+-,n. (1.2)

J=1

Also, Berezansky et al. [32] studied the following cooperative Nicholson-type delay differential system

(1.3)

X = —arxi(0) + bixa(t) + c1x(F = 7)e 10,
x’z(t) —ar X (1) + box1(t) + crxo(t — T)e_XZ(’_T),

In this paper, we will discuss the following competitive and cooperative Nicholson’s blowfly system

X1 = =61(0x1(0) + a1 (D) + X, €1 (Dx1 (1 = 7 (8))e PN T
j=1
—k1(0)x1 (1) x2(1), ) (1.4)
X5 = =62(0x2(0) + ax()x1 (1) + X r(Dx2(1 = To(1))e O RITTD)
j=1
—ka(£)x1(1)x2(1)
where 6;, a;, b;j, ¢ij, Tij, ki : R' — [0, +00) are almost periodic functions i = 1,2,j = 1,2,--- ,n.

x1(1), x2(2) denote the sizes of the different populations at time ¢, ¢;; denotes the maximum per capita
daily egg production of x;, bij represents the size at which the population x; reproduces at its maximum
rate, ¢, is the per capita daily adult death rate of x; , and 7;; denotes the generation time of x;. a;(?)
represents the rate at which x, contributes to x; and a,(¢) represents the rate at which x; contributes to
X, at time t. k;(t) denotes the death rate of x; due to the competition between x; and x, at time 7. The
cooperative terms a;()x,(t) and a,(¢)x;(¢) and the competitive terms k;(#)x;(¢)x2(¢) and k(#)x,(¢)x2(¢)
reflect the degree at which they cooperate and compete with each other, respectively.

Recently, there have been wide-ranging results obtained on competitive and cooperative systems
added the literatures [33—38] due to its extensive applicability. However, to the best of our knowledge,
few results are presented in literatures about the existence of positive almost periodic solutions for
competitive and cooperative Nicholson’s blowfly system. In the real world, since the competition
is inevitable and there exists an almost periodically changing environment, it is worth studying the
positive almost periodic solution for competitive and cooperative Nicholson’s blowfly system. Based
on the above idea, we shall consider the existence and exponential convergence of positive almost
periodic solutions of system (1.4) which possesses obvious dynamics significance.

For convenience, we introduce some notations. Throughout this paper, given a bounded continuous
function g defined on R, let g* and g~ be defined as follows:

g =inf g(®), g" = supg(®).
IERI IERI
It will be assumed that

- - — +
o; > O,bl.j >0,r = {E?‘X{Tij} >0
<j<n

i=1,2,j=1,2,,n

(1.5)
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Let R"(R") be the set of all (nonnegative) real vectors; we will use x = (xy, x2, -+ , x,)! € R" to denote a

column vector, in which the symbol () denotes the transpose of a vector. we let |x| denote the absolute-

value vector given by |x| = (|x], x|, - ,|x,])7 and define ||x|| = ¥nax |x;|. For a matrix A = (a;j)nxn»
<i<n

AT, A7' |A| and p(A) denote the transpose, inverse, the absolute-value matrix and the spectral radius of
A respectively. A matrix or vector A > 0 means that all entries of A are greater than or equal to zero.
A > 0 can be defined similarly. For matrices or vectors A and B, A > B (resp A > B) means that

A—-B >0 (resp. A— B > 0). Denote C = HC([ r;,0,R") and C, = HC([ r;, 0], Rl) as Banach

spaces equipped with the supremum norm deﬁned by

llpll = sup max |901(t)| for all (1) = (¢1(1), 2(1))" € C(or € C,).
—ri<t<0 1=
If x;() is defined on [ty — r;, v) with , v € R' and i = 1,2, then we define x, € C as x, = (x!, x*)T where
xi(0) = xi(t + 0) forall @ € [-r;,0] and i = 1, 2.
The initial conditions associated with system (1.4) are of the following form:

Xy = ¢ ¢ = (o1, )" €C,. (1.6)

We write x,(t, ¢)(x(t; to, ¢)) for a solution of the initial value problems (1.4) and (1.6). Also, let
[70, 7(¢)) be the maximal right-interval of the existence of x,(¢y, ¢).

The remaining part of this paper is organized as follows. In Section 2, we shall give some definitions
and preliminary results. In Section 3, we shall derive sufficient conditions for checking the existence,
uniqueness and exponential convergence of the positive almost periodic solution of (1.4). In Section 4,
we shall give an example and numerical simulation to illustrate the results obtained in the previous
section.

2. Preliminary results

In this section, some lemmas and definitions will be presented, which are of importance in proving
our main results in Section 3.
Definition 2.1. [39,40] Let u(r) : R' — R" be continuous in ¢. u(?) is said to be almost periodic on
R!, if for any & > 0, the set T(u, &) = {0 : |u(t + &) — u(t)| < & for all ¢ € R'} is relatively dense, i.e., for
any € > 0, it is possible to find a real number [ = I(g) > 0, such that for any interval with length /(g),
there exists a number 6 = &(¢) in this interval such that |u(t + 6) — u(t)| < &, forall t € R'.
Definition 2.2. [39,40] Let x € R" and Q(¢) be an n X n continuous matrix defined on R'. The linear
system

X' (1) = Q(0)x(1) (2.1)

is said to admit an exponential dichotomy on R! if there exist positive constants k, a, projection P and
the fundamental solution matrix X(¢) of (2.1) satisfying

IX(OPX'(s)|| < ke™ =9 forall t > s,
IX()(I = P)X7'(s)|| < ke ®“™D  forallt < s.

Definition 2.3. A real n X n matrix K = (k;;) is said to be an M-matrix if k;; < 0,i,j=1,...,n,i # j
and K-! > 0.
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Set
B = {olp = (¢1(1), gog(t))T is an almost periodic vector function on R'}.

For any ¢ € B, we define an induced module ||¢||s = sup max |¢;(¢)|; then, B is a Banach space.
reRr! 1si=
Lemma 2.1. [39,40] If the linear system (2.1) admits an exponential dichotomy, then the almost

periodic system
X'(1) = Q(M)x + g() (2.2)

has a unique almost periodic solution x(#), and

x(t) = f X(O)PX'(s)g(s)ds — f ooX(t)(I—P)X‘l(s)g(s)ds. (2.3)

(%)

Lemma 2.2. [39,40] Let ¢;(¢) be an almost periodic function on R' and
1 t+T
Mc;] = lim —f ci(s)ds >0, i=1,2---,n.
T—+c0 T ¢

Then the linear system
x'(1) = diag(—ci(1), —co(1), - - -, —ca(1))x(2)

admits an exponential dichotomy on R'.

Lemma 2.3. [41,42] Let A > 0 be an n X n matrix and p(A) < 1; then, (I, — A)~! > 0, where I, denotes
the identity matrix of size n.

Lemma 2.4. Suppose that there exist positive constants E;; and E;; such that

Ly C; aiEy RO a;E
Ey > Ep, —+ L= < Ey, — 2 < Ey, (2.4)
JZ:; 61b1je 0] = 62192].6 0,
ﬂE +ZHZC—_1E e bijEn —EE Ey > Epp > ! (2.5)
5 2t 5 1 5 11E2 = b .
Jj=1 I<j<m
a, € b E k3 1
—F»+ —FEye %" — L E(Ey > Eyy > — , 2.6
5 12 Z 5% 21 5 11E2 2z b, (2.6)
J=1 1<j<m J

where i = 1,2. Let
C° :={plp € C,Epn < ¢i(t) < Eyy, forall te[-r,0], i =1,2}.
Moreover, assume that x(t; £y, ¢) is the solution of (1.4) with ¢ € C°. Then,
Ep < xi(t; 1y, ) < Eyy, forall te[ty,n(p)),i=1,2, 2.7

and 7(p) = +oo.
Proof. We rewrite the system (1.4) as

X/(t) = f(ta xt)’
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where  x(t) = (0, )", fe) = (filt,e), Lt ), filtte) = =60e1(0) +
a;(t)p2(0) + Z] 171 (=11 j(1)e POA T — ko (1)1 (0)2(0), fo(t, ) = =62(D)p2(0) + ax(1)e1(0) +
=

anl Ca()pa(=T2j(1)e PO — o (01 (0)pa2(0), @) = (p1(D), p2(1))" € C°. Tt is obvious that
=

f:R'x C® — R?is continuous and C°  C is open. Let ¢, € C; then, considering that sup IL%“I =1
u>0
and the inequality
I-(x+6(y—-x)
ex+0(y—x)

|xe™ — ye™| = | [lx =yl
< |x—y| where x,y € [0,+00),0<6<1, (2.8)
we obtain
01(D|p1(0) — Y1 (0)] + a1(2)|$2(0) — Y2 (0)] + Z (1) X
=1
|¢1(_le(t))e—blj(l)tﬁl(—le(t)) _ wl(_le(t))e—bu(t)l//l(—le(f))l
+k1(D)|¢1(0)$2(0) — 1 (0)2(0)]

@+ aDlip -yl + 3 U0
j=1

IA

|fl(t’ ¢) - fl(t’ 'ﬁ)|

IA

X |b1 (1)1 (=71 j(8))e” PPN T

— by;(1)

—by (W1 (=1 (8))e POV O

+k7 (11 (0)lp2(0) — ¥r2(0)] + 12(0)llp1 (0) — 1 (0)))
+ + C Cirj

(&7 +apllp - vl + ; ok

b1 j(0)1(=71(2)) = b1 j(O1(=71;(D))]

+ki (E11llg — vl + Exllg — vl

6y +aj + ZCT,' +k{Ey + kT Ex)llg — yl. (2.9)

=1

IA

IA

In the same way, we also get

1t 9) = Hrt )] < (6F + a3 + Y ¢k + K Eny + K Ea)llg — vl (2.10)
j=1
Then (2.9) and (2.10) imply that f satisfies the Lipschitz condition in its second argument on each
compact subset of R' x C°. Moreover, since ¢ € C,, it is easy to get that x,(ty,) € C, for all
t € [ty,n(¢)) by using Theorem 5.2.1 from [43, p. 81]. Set x(¢) = x(¢; ty, ) for all ¢ € [y, n(p)).
We claim that
0 < xi(t) < E;y forall ¢ € [ty,n(e),i=1,2. (2.11)

By contradiction, assume that (2.11) does not hold. Then, there exists #; € (¢y, 7(¢)) such that one of
the following two cases must occur:

(1) xy(t)) = Eq1, 0<x;(r) < E;y forall tetgy—ri,t1), i=1,2; (2.12)
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(2) x2(t1) = Ey, 0<xi(t) < E; forall t€(ty—r,t1), i=1,2. (2.13)

In the sequel, we consider two cases.
Case (i). Suppose that (2.12) holds. Considering the derivative of x;(¢), together with (2.4) and the

fact that sup ue™ = 1, we have
u>0

0 < Xll(tl)

= —oitx(n) + at)nn) + ) et = Tyyn))e =m0

=1
—ki(t1)x1(21)x2(t1)
_ N - Cle
< —51X1(I1)+Cl1X2(l1)+ZF;
j=1 "1j
_ + . Cle
< _61E11+a1E21+Zb_I.Z
j=1 J
L aiEy)
= 0,(-En + (5‘bi + 15_ )
o 0105¢ 1
< 0,

which is a contradiction.
Case (ii). Suppose that (2.13) holds. Considering the derivative of x,(¢), together with (2.4) and the

fact that supue™ = 1, we have
u>0

0 < Xn)

= =0x(t)xa2(t1) + ax(t)x1(21) + Z C2j(t)xo(ty — 11 (ty))e PriR =T (1)

j=1
—ka (1) x1 (1) x2(t1)
1
< -0, Xz(l1)+ale(l1)+z
21
i1
2j
< =0, E21+02E11+Zb -
j=1 2]
SEN Oy ayEq
= §;(—Ey + ! 2
2(~Ex Zé‘b‘.e 8,
—1 92Y2 2

< 0,

which is a contradiction. Together with Cases (i) and (ii), (2.11) holds for t € [#y, n(¢)).
We next show that
xi(t) > Ep, forall e (t),n(e)),i=1,2. (2.14)

Suppose, for the sake of contradiction, that (2.14) does not hold. Then, there exists #, € (fy, 7(¢)) such
that one of the following two cases must occur:

(1) x,(t2) = Epp, En < xi(t) < Ey forall t€[ty—rit), i=1,2; (2.15)

AIMS Mathematics Volume 9, Issue 5, 10638—10658.
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(2) x2(tr) = Ey, Ep <xi(t) < E; forall te(tgy—r,t), i=1,2. (2.16)
If (2.15) holds, from (2.5), (2.6), (2.11) and (2.15), we get

E» < xi(t) < Ej, b;}xi(t) > b;E,z > b:— >1

Ymin b7, ~
1<jsn Y

(2.17)

forall t € [ty —ri,1p),i = 1,2, j=1,2---,n. Calculating the derivative of x,(¢), together with (2.5)
and the fact that 1min ue™ = ke ™, (1.4), (2.15) and (2.17) imply that

0 > ()

= —=01(t)x1(t) + ai(tr)x2(t2) + Z c1j(t)x1(ty — 11 (ty))e Prin@n()

=1
—ki(t2)x1(t2)x2(12)
11( 2) T x(t—T1(12))
> —01x1(h) + a;x(t) + Z by xi(ty — T1j(t2))e” gt /
j=1 1]

—ki x1(12)x2(12)
> —6TEp +ajEyp + Z ¢7 Ene P — kT E\ By
=1

a; 1 _ k
= 6 (=Ep+ 6—iE22 + Z 6+JE1 e P — 6—1E11E21)
1

> 0,

which is absurd and implies that (2.14) holds. If (2.16) holds, we can prove that (2.14) also holds in a
similar way.

It follows from (2.11) and (2.14) that (2.7) is true. From Theorem 2.3.1 in [44], we easily obtain
n(p) = +oo. This completes the proof.

3. Main results

Theorem 3.1. Let (2.4)—(2.6) hold. Moreover, suppose that
p(A7'B) < 1. (3.1)

where
n

= 0 Y H+kiEy  af +kiEy
Az( ! _),B= & 0
0 62 a;+k;E21 Z]%+k;E11
J:
Then, there exists a unique positive almost periodic solution of system (1.4) in the region B* = {¢|p €

B,E» < ¢i(t) < E;, forall teRi=1,2,---,n}.
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Proof. For any ¢ € B, we consider the following auxiliary system

X0 = =61()x1(1) + ar(D)pa(1) + 2 (D1 (t = 71(1))e” PN T
ko (61 (00 - a2
X)) = =62(0x2(0) + ax()pi (1) + 2 C2j(D)pa(t — To(1))e P29
k(D1 (Dha(1). -
Since M[d;] > 0 (i = 1,2), it follows from Lemma 2.2 that the linear system
X)) = =5i(Ox(0), i=1,2 (3.3)

admits an exponential dichotomy on R!. Thus, by Lemma 2.1, we obtain that the system (3.2) has
exactly one almost periodic solution x¢(¢) = (x‘f’(t), xg(t))T:

o o= [ e-ff‘”")d“[al(s)c;sz(s)+J§1 C1(8)pr(s = Ty j(5))e PIONETO)
k()1 (5)d2(5)1ds ) (3.4)
L0 = [ e‘fx‘52<“>d“[az<s><m(s)+J§1 C2/(S)pa(s = To(s))e PRIl T21()
—ka(5)1(5)pa(5)]ds.

Define a mapping 7 : B — B by setting

T(¢(1) = x°(1), ¥ ¢ € B.

Since B* = {¢lg € B,Ej < ¢(t) < E;;, forall t € R',i = 1,2}, it is obvious that B* is a closed
subset of B. For i = 1,2 and any ¢ € B*, from (2.4), (3.4) and the fact that sup ue™ = %, we have

u>0
¢ fél(u)du +
) < 1 B2 +
(@) < f K a1 Za,(s)bu(s)e]
T
< —[a E21+Z—]]
j=1 1J
N € aiEx I
= Z —— + —— < E;; forall reR, (3.5)
— 5, b| e 0]
j=1 J
and

x‘g(t) < f e f§2(“)d“[a+E11 +Zczj(s)
oo =
1, NG
g[azEu + Z g]
j=1 J

AIMS Mathematics Volume 9, Issue 5, 10638—10658.
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LSy arE
= 42U . E,y forall teR. (3.6)
= 52b2je 5

In view of the fact that min ue™ = ke, from (2.5)—(2.7) and (3.4), we obtain

1<u<k
! n
— "8y (wdur - 1 —bT .91(s—11(s
xlf(t) > f e 1;51( )d [a] E22 + Z clj(s)b_+b-li—j¢l(s _ T]j(S))e blj¢1( 1;(5)
o Jj=1 1j
—ky ¢1(5)pa(s)]ds
| S ot
2 5—+[611E22 + Z CUElle b _ k-l'—EllEZI]
1 j=1
a akal orEn K I
= EEQZ + 6—+E11€ U= = (FEUEM > FE, forall teR’, 3.7
1 j=1 "1 1

and

! n
" 1 et .
x"zj(t) > e 2du g E Ly + C2(8)=Db3 h2(s — T25(s5))e bajf1(s=m2j(s)
by
—00 j

j=1
—k; 1(8)p2(s)1ds
1 « _ g+

2 5_+[a2E12 + ZCZJ-Eme b jE _k;EllEZI]
2 j=1
ag - ng —b*.E k; 1

= =FE;,+ —F 2j720 — = FEy > Ey forall reR". 3.8
5; 12 JZ:; 5; 21€ 5; 11£21 22 (3.8)

Therefore, (3.5)—(3.8) show that the mapping 7 is a self-mapping from B* to B*.
Let o,y € B*; fori = 1,2, we get

sup [(T'(¢(1)) = TW(O)

teR!
f
= sup| | e BN q (5)(a(s) - as))
ter! —o0
+ Z Clj(s)(ﬁol (s — le(s))e—bl_/(s)wl(S—Tl_/(S)) — (S _ le(s))e—bl_j(s)wl(S—le(S)))
=1

—k1()(@1(8)p2(s) — i (s)a(s)]ds|
= supl [ e F O ay(9)(pa(s) —a(s) + ) Ciiﬁiﬁ X

Jo b
teR 00 j=1
(b1($)1(s = 71 (8)e™IICTIO — by (s (5 = 71 (5))e T
—k1($)(@1(8)p2(5) — @1($)2(s) + @i ()a(s) — Y1 (Ya(s))]dsl, (3.9)

and

sup [(T'(¢(1)) = T (W (1))l

teR!

AIMS Mathematics Volume 9, Issue 5, 10638—-10658.
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= sup| | e L@y ()(p1(s) - i (s))

teR! —o0

n
+ D e2,()als = Tay(s))e ORI — (s — o (s))e PN
j=1

—ka(5)(@1()p2(s) — Y1 (s)a(s))1ds|
= sup| [ e kRN ay(5)(pi(s) - wl(s>)+zb

teR! —co

2]( )
2]( )

(b2j(8)pa(s — 12j(5))e” L2252y _ byi(s)a(s — sz(S))e_hz"'(s)wz(S_TZ’(S)))

—ka()(p1()pa(5) = pr()a(s) + 1 ()a(s) = i (s)a(s)]ds|.
Since
1
bij($)ei(s = Tij(8)) 2 bjEp 2 bjj——— 21, forall seR',i=1,2,j=1,2,---,n,
and

1
b,’j(S)lﬁi(S—Tij(S)) > leE2 > b_— > 1, for all s ERl,i = 1,2,j = 1,2,"' , n.

! min

1<j<n ij
According to (1.4), (2.5), (3.5), (3.7) and (3.9), together with sup |1 and the inequality
u>1
xe = ye = XA Z D)
Y eX+0y—x) -y
1
< —2|x—y| where x,ye€[l,+),0<6<1,
e
we have
sup [(T'(¢(2)) — T ()]
teR!
ai
< = suplpa(n) — Ya(D)l
1 teR!
! . n 1
+ Supf e_fs 61(w)du Z cf/.;kpl(s - le(S)) - l//](s - T]j(S))ldS
teR! J -0 —
Jj=1
!
+ Supf e kg (5)(lp1 ()a() = Ya ()] + Wa(9lle1 () = w1 (s)dls
teR! J -0
< =L suplea(t) — Y ()] + Z - sup oy (1) = Y (1)
1 teR! tER
kf k;“
+6_‘E“ sup |ga(1) — Y2 (2)| + 6—_E21 sup |¢1 () — Y1 (2)],
1 teR! 1 ter!

(3.10)

(3.11)

AIMS Mathematics Volume 9, Issue 5, 10638—-10658.
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= (

n
ct + at +

k k
6_“ +5—_E21)Sup|901(t) ¢1(f)|+(—+5—_E11)SUP|¢2(f) wa (o).
=1 16 teR! teR!

Similarly, we also get

sup [(T'(¢(1) = TW (1))

teR!
+ +

< (Z — Ell)SUP lp2(1) — Yo (D) + (— + 6—E21)SUP o1 (1) — Y (D).

teR! 2 teR!

Hence

IA

(sup [(T(@(0) = T, sup (T (@) = T@0)al)"

teR! teR!
at kt
((Z (5‘_2 + _E21) ilg) lp1(2) — Y1 (D] + (a + aEll) f;f.) l2(2) — (D),
(Zn: CL—;’ + k—_Eu) sup |g2(1) — Yo () + (—i + k_EZI) sup |1 (1) — g1 (D))"
ioyer 6, . 65 0
F (fl:f lo1 (1) — Y1 (D), ft}f l2(2) = Y (1))
F (g}) (@) = (@)l g{g l(@(t) — (D)D),

where F = A™'B. Let u be a positive integer. Then, from (3.14) we get

IA

IA

(sup [(T*(p(1)) = THW O, sup (T (p(1) = TH(W(e))a)”

ter! ter!
(sup [(T(T*~" ((1))) = T(T* W),
ter!
sup [(T (T~ (1)) = T(T* ()"
teR!
F(sup [(T*" (1)) = T*' ()))l, sup (T~ (1)) = T W())a)"
teR! ter!

FH(sup (e(r) = ()1, sup l((2) = g(1))a)”

teR! teR!
F*(sup |y (1) — Y1 (1)), sup la (1) — g (D))"
teR! teR!

Since p(F) < 1, we obtain

lim F* =0,

H—>+00

which implies that there exist a positive integer N and a positive constant r < 1 such that
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V=B = (gi)pe and Y gy <ri=1.2

J=1

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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In view of (3.15) and (3.16), we have
(TN (@(0)) = TV (W)l

IA

sup [(TY (¢(1) = T (1)

teRl

IA

Z 817 Sup I (1) — /(1)

teR!

IA

sup max (1) = 410 Z %

tER] sJ= j=1

IA

rlle(®) — (@3,
forallt € R,i = 1,2. It follows that

IT (@) = TV (W (0)llp = sup max (T (1) = TY @Dl < rllp(r) = g(@)lls. (3.17)

reR! 15i<
This implies that the mapping TV : B* — B* is a contraction mapping.

By the fixed point theorem for Banach space, T possesses a unique fixed point ¢* € B* such that
Ty" = ¢*. By (3.2), ¢" satisfies (1.4). So ¢* is an almost periodic solution of (1.4) in B*. The proof of
Theorem 3.1 is now completed.

Theorem 3.2. Let x*(#) be the positive almost periodic solution of system (1.4) in the region B*.
Suppose that (2.4)—(2.6) and (3.1) hold. Then, the solution x(t; t, ¢) of (1.4) with ¢ € C° converges
exponentially to x*(¢) as t — +oo.

Proof. Since p(A™'B) < 1, it follows from Theorem 3.1 that system (1.4) has a unique almost periodic
solution x*(r) = (x’l‘(t),xz(t))T in the region B*. Set x(¢) = x(t; ty, ), x*(t) = x*(t; 19, ¢") and y;(¢) =
x;i(t) — x: (1), where ¢, ¢* € C% t e [ty—r;,+0), i = 1,2. Then, we have the following:

i@ = =61(Oyi(t) + ar(®ya(t) + Z 1 (O (= (1)) PN ETUO)
—x; (1 — Ty (1))e PN ”f(‘”) ki (0)(x1(D)x2(2) — x7(0)x5(2)),
~62(Dy2(t) + ax ()i (1) + Z C2j(D)(xa(f = T (1))~ PRS0
—x5(t = Ty (1))e PR ’Zf“”) ka(D)(x1(D)x2(2) = X} (1) X5(2)).

Again from p(A™'B) < 1, it follows from Lemma 2.3 that I, — A™' B is an M-matrix; we obtain that
there exists a constant s > 0 and a vector & = (£1,&)" > (0,0)7 such that

(L-A"'B)¢ > (p)'.

(3.18)

y5(0)

Therefore,

I _
&1 — (Z 5 lejz + E21)§1 - (6— %En)fz > [,
K _
& — (Z 5 ez + En)fz ( + %EZI)& >,
which implies that
(=67 + %, Y+ K Enér + (af +kTEn)é < —67TL,
j:

nocys (3.19)
(=0, + 21 2 + K E)é + (a5 + k3 Ex)é) < 0,1
=
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We can choose a positive constant 7 < 1 such that

T+ (-6 + 3 LM + ki Exé + (a +kTEné <0,
e (3.20)

né + (=6, + _Zl =" + kS E)éE + (af + k3 Ey)é < 0.
j:

In the sequel, we consider the following Lyapunov function:
Vi(r) = lyi0)le™™, i =1,2. (3.21)

In view of (2.5)—(2.7), fori € {1,2} and j € {1,2,--- ,n}, we obtain

1
bl-j(t)xi(t — Tij(t)) > b;Elz > b;m > 1, forall te [to — i, +OO),
1<j<m i

and

bij(0)x;(t = 7ij(0)) 2 bjyEp 2 by———— 2 1, forall 1€ R,

which, together with (3.11) and (3.18), imply that

D™V,()

IA

n
51O O + @ O] + 3 ¢ (e
J=1
|x1(t _ le(t))e—bl_/(l))fl (t=71;(0) _ XT(t _ le(t))e—b|_,(t)x”{(z—rl_,(z))|

(D70 (D(1) = X, (x5 (D] + 7y ()]
(7= S1VA(D) + @i Valt) + 3, FA3em X
=10

IA

b1 j(1)x1(2 = 71 (8) )P0 =750
—b1 (1]t = 71, (B)e OO
+ky (01 (D] 2x2(8) = x5(0)]™7) + ky (D|x5(D]|x1 (1) = x7 (1) e

(1= Vi) + Vo) + 3 A2y (1 = 7))
+k{E Va(t) + kazlvl(t)Fl

(=67 + Kk Ex)Vi(0) + é Lem Vit - 14,(1)

+(aj + k{E1)Va(2), (3.22)

IA

IA
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10651

and

D™V, (1)

IA

=02 (O)y2(D)]e™ ) + ar (D)1 ()]e™ ) + Z ¢ ()€ x
]_

|x2(t _ sz(t))e baj(Nx2(t—12j(1)) _ xz(l‘ — Ty (t))e baj(D)x5(1— 72.,(;))|

+ky ()™ x1 (1) x5 () — x*(t)xZ(t)| + nlyz(t)|e’7(t"0)

(1 = 62())Va () + a; Vi (D) + Z ;212) n=10) 3¢

IA

|b21(l))62(l‘ — 7'2](1‘))g_b21(t)x2(1 sz(t))
—baj (D)Xt = Taj(1))e PRI
oo (D (Dlx2(6) = x5Ol + k(D Dl (1) = x5 @)™

(7= )Va(t) + a; Vi(1) + '21 Czejz(t) ya(t — T2j(2))]e™* ™
]:

+k+E11V2(t) + k+E21V1(I)

(=8 + KEWVA0 + 5 Fervate- o0)

IA

IA

+((12 + k+E21)V1 (1.

Let ¢ > 1 denote an arbitrary real number such that

s> llp —¢'ll = sup maxp(s) — ¢ ()| > 0, i=1,2.

—r;<s<0

It follows from (3.21) that
Vi(t) = Iyl ™ < 6&;, forallt € [ty — ri 1), i =1,2.

We claim that
Vi(t) = [yi0)|e™™ < ¢&;, forallt>ty, i=1,2.

In contrast, there must exist i € {1,2} and r* > £, such that
Vi(r') = ¢&, and V;(t) < ¢&;, forallze[tg—r;r"), j=1,2.

Thus,

Vi(r) —¢é, =0, and Vi(1) = ¢¢; <0, forallt e[ty —rj,r), j=1,2,

or

Vo(r') —¢é, =0, and Vi(1) —¢&; <0, forallt €[ty —rj,r), j=1,2.

Together with (3.20), (3.22), (3.23), (3.26) and (3.27), we obtain

D~(Vi(r) — ¢&1)

D= (Vi(r*))

(n =067 +kiEx)Vi(r') + Z €""V1(” —71;(r"))
+(aj + k+E11)V2(r )

¢lnér + (=67 + Z =" + kf Ey))ér + (af + kTE)é]
< 0,

0

I IA

IA

IA

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)
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or

D™ (Vao(r) — ¢&)
D~ (Va(r'))

)
I IA

< =6+ KE)V(r) + é Ceizjemvz(”* — 72;(r"))
+(a; + k3 Ex)Vi(r)
< g + (=0; + é S 4 K Ey)és + (@) + K Exé]
< 0, (3.29)

which are both contradictory. Hence, (3.24) holds. Let M > 1 such that
s&i < Mllp —¢'ll, i = 1,2. (3.30)
In view of (3.24) and (3.30), we get
xi(1) = X{ ()] = (D] < 6&e™™™ < Mllp — ¢"lle™™ ™), forall t>1, i=1,2.

This completes the proof.

Corollary 3.1. Let (2.4)—(2.6) hold. Suppose that I, — A~'B is an M-matrix. Then system (1.4) has
exactly one almost periodic solution x*(f). Moreover, the solution x(;t,¢) of (1.4) with ¢ € C°
converges exponentially to x*(¢) as t — +oo.

Proof. Since I, — A~ B is an M-matrix, it follows that there exists a vector d = (d;,d>)” > (0,0)” such
that

(I, —A™'B)d > 0, (3.31)
hence
—67dy + (3 % + ki Exdy + (ah + kT Ei)dy < 0
S (3.32)
—(55612 + (Z % + k;E]])dz + (Cl; + k;Ezl)dl <0.
=1
For any matrix norm || - || and nonsingular matrix D, ||A||p = |[D~'AD|| also defines a matrix norm. Let

D = diag(d,,d>). Then (3.32) implies that the row norm of matrix D~'A~'BD is less than 1. Hence
p(A7'B) < 1. Corollary 3.1 follows immediately from Theorems 3.1 and 3.2.

4. Example and numerical simulation

In this section, we give an example and present a numerical simulation to demonstrate the results
obtained in previous sections.

AIMS Mathematics Volume 9, Issue 5, 10638—10658.
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Example 4.1. Consider the following competitive and cooperative Nicholson’s blowfly system:

X = —(18+cos? V5nx () + (1 + 0.7 sin e 2xx(1)
+¢¢71(9.5 + 0.005] sin V21)x, (1 — el ini+Isin V2)xi(r=
+471(9.5 +0.005] sin V51)x; (¢ — eleos Varleostygmxi=eleo ¥l
—0.1e7% cos? tx; (£)x2(2)

| sin f|+] sin w@\)

4.1
X0 = —(18 +sin® V50)x2(r) + (1 + 0.7 cos? H)e*2x (1) @D
+°71(9.5 + 0.005] cos V2i])xy(1 — el coslcos Vithygmnal=eleoieon iy,
+¢71(9.5 + 0.005] sin V6|)xa(f — elc0s VIHHlcos V3l gmrati=eleos Viizicos i)
—0.1e72 sin® tx; () x2(7).
Obv10usly, 67 = 18,67 =19,a; = ¢~ =1.7¢2, b, =bl=1, c; = =9.5¢7 1, ¢}, = 9.505¢¢!, k=
0.le?andr; =€ (i, j = 1,2). LetE1 —eandE2 = lforz— 1,2; weobtain
a8 0 19.01e3 +0.1e! 1.7¢2+0.1e!
Lo 18) 7T 17¢240.1et 19.01¢473 +0.1¢7!
2, ¢l a'Ey 19.01e2 + 1.7
T - : <e (4.2)
— §bie 6] 18
j=1 J
< JEn 19.01e72 + 1.7
_21 +612_11: 9.0l +1.7¢ <o 4.3)
— 52b2je 83 18
19+ e 2 - 0.1
Ezz + Z —E e ~biEn 6%E11 21 = 19 > 1 4.4)
k3 19 +e2-0.1
E + —E B TTY O Ay | 4.5
12 Z 1€ 52 11E2] 19 > 4.5)
P(A7'B) ~ 0.9946 < 1. (4.6)

Then (4.2)—(4.6) imply that the competitive and cooperative Nicholson’s blowfly system (4.1) satisfies
(2.4)—(2.6) and (3.1). Hence, from Theorems 3.1 and 3.2, system (4.1) has a positive almost periodic
solution

X't eB ={plpeB, 1<t <e, forall teR,i=1,2}.

Moreover, if ¢ € C° = {¢|lp € C,1 < ¢;(t) < e, forall t € [—e%0],i = 1,2}, then x(t; ty, ¢) converges
exponentially to x*(f) as t — +oco. The fact is verified by the numerical simulation illustrated in
Figure 1.

Remark 4.1. To the best of our knowledge, few authors have considered the problems related
to positive almost periodic solutions of competitive and cooperative Nicholson’s blowfly systems.
Therefore, the main results in [31, 32] and the references therein can not be appled to prove that all
solutions of (4.1) with initial the value ¢ € C° converge exponentially to the positive almost periodic
solution. This implies that the results in this paper are new and this complements previously obtained
results.
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Figure 1. Numerical solution x(f) = (x;(£), x2(£))? of system (4.1) for the initial value ¢(f) =

(1.5,2.5)".

5. Conclusions
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This article investigated a class of competitive and cooperative Nicholson’s blowfly system. Unlike

AIMS Mathematics

what has been done for some known cooperative Nicholson’s blowfly systems [31,32], we have
introduced the competitive terms to describe two distinct blowfly populations that compete with each
other. By constructing invariant sets and applying the fixed point theorem, we derived some sufficient
conditions to ensure that the addressed system has a unique exponential stable positive almost periodic
solution. Inspired by the latest Nicholson’s blowfly models [3—10], our future works will be devoted to
competitive and cooperative Nicholson’s blowfly systems involving distinct delays, distributed delays
and mixed delays.
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