Research article Special Issues

Theoretical analysis of a class of $ \varphi $-Caputo fractional differential equations in Banach space

  • Received: 10 December 2023 Revised: 22 January 2024 Accepted: 23 January 2024 Published: 05 February 2024
  • MSC : 26A33, 34A08, 47H08

  • A study of a class of nonlinear differential equations involving the $ \varphi $-Caputo type derivative in a Banach space framework is presented. Weissinger's and Meir-Keeler's fixed-point theorems are used to achieve some quantitative results. Two illustrative examples are provided to justify the theoretical results.

    Citation: Ma'mon Abu Hammad, Oualid Zentar, Shameseddin Alshorm, Mohamed Ziane, Ismail Zitouni. Theoretical analysis of a class of $ \varphi $-Caputo fractional differential equations in Banach space[J]. AIMS Mathematics, 2024, 9(3): 6411-6423. doi: 10.3934/math.2024312

    Related Papers:

  • A study of a class of nonlinear differential equations involving the $ \varphi $-Caputo type derivative in a Banach space framework is presented. Weissinger's and Meir-Keeler's fixed-point theorems are used to achieve some quantitative results. Two illustrative examples are provided to justify the theoretical results.



    加载中


    [1] S. Abbas, M. Benchohra, G. M. N'Guerekata, Advanced fractional differential and integral equations, Hauppauge, New York : Nova Science Publishers, 2014.
    [2] M. Abu Hammad, Conformable fractional martingales and some convergence theorems, Mathematics, 10 (2022), 6. https://doi.org/10.3390/math10010006 doi: 10.3390/math10010006
    [3] K. Diethelm, N. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248. https://doi.org/10.1006/jmaa.2000.7194 doi: 10.1006/jmaa.2000.7194
    [4] A. Zraiqat, L. K. Al-Hwawcha, On exact solutions of second order nonlinear ordinary differential equations, Appl. Math., 6 (2015), 953–957. https://doi.org/10.4236/am.2015.66087 doi: 10.4236/am.2015.66087
    [5] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [6] T. Kosztołowicz, A. Dutkiewicz, Subdiffusion equation with Caputo fractional derivative with respect to another function, Phys. Rev. E, 104 (2021), 014118. https://doi.org/10.1103/PhysRevE.104.014118 doi: 10.1103/PhysRevE.104.014118
    [7] H. Arfaoui, New numerical method for solving a new generalized American options under $\Psi$-Caputo time-fractional derivative Heston model, Rocky Mountain J. Math., submitted for publication.
    [8] Q. Fan, G. C. Wu, H. Fu, A note on function space and boundedness of the general fractional integral in continuous time random walk, J. Nonlinear Math. Phys., 29 (2022), 95–102. https://doi.org/10.1007/s44198-021-00021-w doi: 10.1007/s44198-021-00021-w
    [9] F. Norouzi, G. M. N'Guérékata, A study of $\psi$-Hilfer fractional differential system with application in financial crisis, Chaos Solitons Fractals, 6 (2021), 100056. https://doi.org/10.1016/j.csfx.2021.100056 doi: 10.1016/j.csfx.2021.100056
    [10] M. Awadalla, Y. Y. Yameni Noupoue, K. Abu Asbeh, Psi-Caputo logistic population growth model, J. Math., 2021 (2021), 8634280. https://doi.org/10.1155/2021/8634280 doi: 10.1155/2021/8634280
    [11] T. V. An, N. D. Phu, N. V. Hoa, A survey on non-instantaneous impulsive fuzzy differential equations involving the generalized Caputo fractional derivative in the short memory case, Fuzzy Set Syst., 443 (2022), 160–197. https://doi.org/10.1016/j.fss.2021.10.008 doi: 10.1016/j.fss.2021.10.008
    [12] Z. Baitiche, C. Derbazi, J. Alzabut, M. E. Samei, M. K. Kaabar, Z. Siri, Monotone iterative method for $\Psi$-Caputo fractional differential equation with nonlinear boundary conditions, Fractal Fract., 5 (2021), 81. https://doi.org/10.3390/fractalfract5030081 doi: 10.3390/fractalfract5030081
    [13] A. El Mfadel, S. Melliani, M. Elomari, Existence results for nonlocal Cauchy problem of nonlinear $\Psi$-Caputo type fractional differential equations via topological degree methods, Adv. Theory Nonlinear Anal. Appl., 6 (2022), 270–279. https://doi.org/10.31197/atnaa.1059793 doi: 10.31197/atnaa.1059793
    [14] M. Tayeb, H. Boulares, A. Moumen, M. Imsatfia, Processing fractional differential equations using $\psi$-Caputo derivative, Symmetry, 15 (2023), 955. https://doi.org/10.3390/sym15040955 doi: 10.3390/sym15040955
    [15] Z. Lin, J. R. Wang, W, Wei, Multipoint BVPs for generalized impulsive fractional differential equations, Appl. Math. Comput., 258 (2015), 608–616. https://doi.org/10.1016/j.amc.2014.12.092 doi: 10.1016/j.amc.2014.12.092
    [16] R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler functions, related topics and applications, Berlin, Heidelberg: Springer, 2014. https://doi.org/10.1007/978-3-662-43930-2
    [17] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, New York: Elsevier, 2006.
    [18] C. Derbazi, Z. Baitiche, M. Benchohra, Coupled system of $\psi$-Caputo fractional differential equations without and with delay in generalized Banach spaces, Results Nonlinear Anal., 5 (2022), 42–61. https://doi.org/10.53006/rna.1007501 doi: 10.53006/rna.1007501
    [19] J. Banas, K. Goebel, Measure of noncompactness in Banach spaces, New York: Marcel Dekker, 1980.
    [20] A. Aghajani, E. Pourhadi, J. Trujillo, Application of measure of noncompactness to a Cauchy problem for fractional differential equations in Banach spaces, FCAA, 16 (2013), 962–977. https://doi.org/10.2478/s13540-013-0059-y doi: 10.2478/s13540-013-0059-y
    [21] M. I. Kamenskii, V. V. Obukhovskii, P. Zecca, Condensing multivalued maps and semilinear differential inclusions in Banach spaces, Berlin: De Gruyter, 2001. https://doi.org/10.1515/9783110870893
    [22] A. Aghajani, M. Mursaleen, A. Shole Haghighi, Fixed point theorems for Meir-Keeler condensing operators via measure of noncompactness, Acta Math. Sci., 35 (2015), 552–566. https://doi.org/10.1016/S0252-9602(15)30003-5 doi: 10.1016/S0252-9602(15)30003-5
    [23] B. Ahmad, A. F. Albideewi, S. K. Ntouyas, A. Alsaedi, Existence results for a multipoint boundary value problem of nonlinear sequential Hadamard fractional differential equations, Cubo, 23 (2021), 225–237. https://doi.org/10.4067/S0719-06462021000200225 doi: 10.4067/S0719-06462021000200225
    [24] M. Abu Hammad, R. Shah, B. M. Alotaibi, M. Alotiby, C. G. L. Tiofack, A. W. Alrowaily, et al., On the modified versions of G' G-expansion technique for analyzing the fractional coupled Higgs system, AIP Adv., 13 (2023), 105131. https://doi.org/10.1063/5.0167916 doi: 10.1063/5.0167916
    [25] M. Abu Hammad, A. Awad, R. Khalil, E. Aldabbas, Fractional distributions and probability density functions of random variables generated using FDE, J. Math. Comput. Sci., 10 (2020), 522–534. https://doi.org/10.28919/jmcs/4451 doi: 10.28919/jmcs/4451
    [26] M. Abu Hammad, S. Alsharif, A. Shmasnah, R. Khalil, Fractional Bessel differential equation and fractional Bessel functions, Ital. J. Pure Appl. Math., 47 (2022), 521–531.
    [27] S. Alshorm, I. M. Batiha, I. Jebril, A. Dababneh, Handling systems of incommensurate fractional order equations using improved fractional euler method, In: 2023 International conference on information technology, 2023. https://doi.org/10.1109/ICIT58056.2023.10226115
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1135) PDF downloads(96) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog