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1. Introduction

The present paper is devoted to analyzing the following problem with a constant coefficient @ > 0
of the form:

(DL + @ D) y(0) = g y@). 1€ = [a.bl,
(1.1)
y(a) =y'(a) =0,

where 1 < a < 2, CDZ? is the Caputo fractional derivatives concerning ¢ of order 6 € {a,a — 1},
g : I x X — Xis a function satisfying some hypotheses that will be precise later and (X, || - ||) is a real
Banach space.

The study of differential equations involving integer or non-integer order derivatives has emerged
as a pivotal tool for modeling complex phenomena across diverse scientific and engineering domains.
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Extensive exploration by various authors, as reflected in references such as [1-4], underscores the
multifaceted nature of this theoretical framework. In contemporary research, the incorporation of
non-integer order derivatives, particularly through the ¢-Caputo type introduced in [5], has gained
prominence in concrete modeling. Applications range from anomalous diffusions, including ultra-
slow processes [6], to financial models such as the Heston model [7], random walks [8], financial
crises [9], and the Verhulst model [10]. The focus has intensified on both quantitative and qualitative
properties of solutions for differential problems governed by ¢-Caputo type derivatives, as evident
in works like [11-13]. In this context, the present research seeks to advance the findings from [14]
to a more general setting. Specifically, the investigation addresses scenarios where nonlinear forcing
terms operate within infinite-dimensional Banach spaces. Employing a Weissinger type fixed point
theorem, the study strategically sidesteps certain additional hypotheses identified in [14, Theorem 7].
Furthermore, through the integration of fixed point techniques and the measure of noncompactness
(MNC) under specific growth and compactness assumptions, the research extends the existence
result initially established in [14, Theorem 6]. This comprehensive approach aims to deepen the
understanding of differential equations with non-integer order derivatives, offering insights into their
behavior in complex and infinite-dimensional settings [15].

The current paper is divided into four sections: We collect in Section 2 the basic background needed
in the remainder of the paper. In Section 3, Weissinger’s and Meir-Keeler’s fixed point theorems are
used to obtain a new existence criterion. Finally, two illustrative examples are presented.

2. Preliminaries

Throughout this paper, we endow the space C(J, X) of continuous functions z : J — X by the norm

llzllo = supllz(#)ll, forall z € C(T,X).

ey

L'(3,X) denotes the Banach space of Bochner integrable functions z : 3 — X normed by

b
el %) = f llz(n)lldz,  forall z € L'(3,X).

Set
SR =1{p 1 ¢ C'(3,R) and ¢'(r) > 0 forall 7€ I}

Letting ¢ € S'7(3,R) for s,¢ € 3, (s < 1), we define
@(t,5) = @(1) — @(s) and @(1, 5)" = (p(1) — (s))" .
Definition 2.1. [16] The Mittag-Leffler function M,(-) is given by

> n

_ Z
Ma@ = ) ey @0 2€R),

n=0

where I'(:) is the gamma function.
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Definition 2.2. [5,17] The ¢-fractional integral of a function f of order a > 0 is given by

1 A
T2 f(n) = @ f @(t, )" '@ () f(s)ds, t>a,

with ¢ € S5 (3, R).
Lemma 2.1. [5,17] Let a,y > 0, then

: - I'(y) _
J-a;go t, y—1 =—"" o, a+y l.
o Pa) r(a+y)‘p( a)

Lemma 2.2. [18] Let @ > 1 and ¢ > 0. Then, for all t € J we have

If’:lwecs@(t,a) < 1 5P
a ga—l

Definition 2.3. [S]Letn—-1 <a <nwithneN, ¢ € Sif(S, R). The left-sided ¢-Caputo FDs of a
function f of order « is defined as

. wof 1 dY
(‘D f) 0 = 15 (m E) f).
Definition 2.4. [19] Let O C X be a bounded set. The Hausdorff MNC of O is defined by
A(O) = inf {€ > 0 : O has a finite € — net in X} .
Lemma 2.3. [19] Let O,V c X be bounded. Then, A satisfies:

(1) A(O) =0 & O is relatively compact.

(2) O c V= A(0) < AV).

(3) A(OUYV) =max{A(O), A(V)}.

(4) A(0) = A(0) = A(conv(Q)), where conv O and O denote the convex hull and the closure of O,
respectively.

(5) A(O+V) < A) + A(V).

(6) A(10) < |A|A(Q), for any A € R.

Lemma 2.4. [20] Let O c X be bounded. Then, for all €, there is a sequence {x,},., C O such that

A) <2A ({x,}2)) + €.

n=1
The set O ¢ L'(3,X) is called uniformly integrable if for all £ € O we have
KO < 6(r), ae.r€s,
with § € L' (J,R").
Lemma 2.5. [21] Assume that {£,}>>, € L'(3,X) is uniformly integrable, the map t —> A ({£,(1)}:2))

n=1
is measurable, and furthermore

A({f én(S)dS} )SZIA({Q(S)}Zil)dS-
a n=1 a
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We now recall respectively the theorems of Weissinger and Meir-Keeler that we will use in the
following.

Theorem 2.1. [3] Let (E, ||-||) be a Banach space and ®,, > 0 for every n € N where ;. , ®, converges.
If the operator N : E — E satisfies

d(N"u,N'v) < 0,d(u,v), u,vekE,

foreveryn € N, then N has a uniquely defined fixed point u*. Additionally, for any v, € E, the sequence
{N"vo}>"| converges to u’.

Definition 2.5. [22] Let B ¢ X be a nonempty set. We say that N : B — B is a Meir-Keeler
condensing operator, if for any € > 0, there exists n > 0 such that

e<AA)<e+n = AWNA)<e,

for any bounded subset A of B.

Theorem 2.2. [22] Let B be a nonempty, bounded, closed, and convex subset of a Banach space X. If
N : B — B is a continuous and Meir-Keeler condensing operator, then N has at least one fixed point
and the set of all fixed points of N in B is compact.

3. Main results

Theorem 3.1. We impose the assumptions:

(Al) g : I XX — X is a continuous function.
(A2) There exists a constant L, > 0 such that

llg(z, u1) = g(t, u)|l < Lglluy — uol, (3.1

forany u;,u; €e Xandte 3.
Then, problem (1.1) admits a unique solution on 3.

Proof. According to [14, Theorem 1], let us introduce L : C(J, X) — C(J, X) given by

Ly = (@~ 1) f e ) (127 g(r, y(1))) ()¢ (s)ds, 1€ 3. (3.2)

Evidently, the solutions of problem (1.1) can be regarded as the fixed point of £. We will show, with
the aid of Theorem 2.1 and a suitably selected equivalent norm, that £ admits a unique fixed point.

In this respect, let y,z € C(J,X). Then, for every t € J and n € N, since 0 < e~ ™) < 1 for
a<s<t<b,wehave

1Ly - Leo)ll < (@ = 1) [ ([ £DED io(r, (1)) - g(r. 2(1)lld7) ¢/ (s)ds.
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Using (A2) and Lemma 2.1, one gets
7)p(s,7)¢ 2
1Ly = L)l < (@ = DLy =2l [ /() ([ £RE"—dr) ds
< - DL T @' ($)p(s,a)*” Id
< (@ = DLy - 2| [ €980 g
Ly(a=Dp(t,0)"

< Lo Detal .

Again, by (A2), we obtain

IL2y(t) = L2zl < I L(Ly(0) — LILz )]

<(@=1) [/ ([ £ g(r, Ly(1) - g(r, La(D)]ldT) @' (s)ds

< (@ = DL [/ ([ £2£9) £y(7) = La(@)lldT) @' (5)ds

(01 1’12 7)g(s,7) 2 a ’
< Ty — 2l [ ([ €598 o(r, a)*d7) ' (s)ds.
Lemma 2.1 entails

1L25(1) — L20l < (@ = DLl —2ll [ €59 o/ (s)ds

L2(a—1)*p(t.a)*®
8
< “Foen Iy =l

Repeating the process for n = 3,4, - - -, for each ¢ € J, it remains to show that

n n Ly(a=D¢(t.a)")"
1Ly - Lozl < DA gy g,

By induction, assume that (3.3) holds for some n and let us prove it for n + 1.
One has

1L y(0) = L 20|
< LL(LMy(@) = LL D))
< (= 1) [ ([ £ g(r, L1y(0) - g(r, L'2(D)lldT) ¢ (5)ds

< (@ - DL, [ ([ £ £y(7) - Lr2(0)lldT) ¢ (s)ds

)a 2

Le(a-) T)PLS,T na ’
= < ¢ r(m+1)) lly = Z”f ( s0<r)zp; n—e(T,a) dT)cp (s)ds.
Lemma 2.1 yields

(Y a)(n+l)afl

1Ly = L2 < (Lol - 1))"+1 ly =2l [ &g (s)ds

(Lela=Dg(r.ay)"™"
< “Tawrnsn Y~

Hence, inequality (3.3) holds.

(3.3)
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Therefore, we conclude that for all n € N, one has

(Le(a = (b, )’

Wy =Ll s =0

ly—zll, y,zeC@,X).

By putting
(Lo = Dp(b, a)")
" I'ha +1)

b

we observe that .
> © (Lg(a = De(b, a)*
2.0=) t CYr(nai 1)a . Mo (Ly(@ = De(b,a)").

n=0 n=0

(3.4)

Finally, Theorem 2.1 entails that £ admits a unique fixed point which is the unique global solution of

problem (1.1).

Now, we prove another existence result, which is based on Theorem 2.2.
Theorem 3.2. Assume that assumption (Al) holds. Furthermore, we suppose:
(A3) There exist continuous functions &,k : 3 — R, such that

g, wl < &@) + kOllull,  ue X,

forallt € 3.

O

(A4) There exists a continuous function o : 3 — R, such that for each bounded set U C X, and each

t €3, we have
A(g(t,0)) < o()A(D).

(A5) The following inequality holds:

olb,a) _

(@ - 1) + K*R)F(a PR

with
R>0, « =supk(t), and & =supé(t).

1€y 1€y

Then Eq (1.1) admits at least one solution.

Proof. Introduce again the operator £ represented by (3.2) and define the ball
Br={yeCG.X) : Ihlle <R}
Step 1. L is a self-mapping from By to Bz. By (A3), we have

1Lyl < (@ = 1) [ ([ €2 o, y()lld) ¢ (s)ds
< (- 1) [/ ([ £D8D &(0) + k(@lylDdr) ¢ ()ds

; S @ (T)p(s,7)* 2 ,
< (a-DE -+ [ ([ EREDdr) ¢ (s)ds.

a
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Combining Lemma 2.1 and (AS), one gets

s * (b,a)*
1Lyl < (@ = DE + &IV Egs

s * (b,a)*
<(a- 1)({? + K R)%

<R

Thus,
ILyll < R.

This shows that £ is a self-mapping from By to Bg.

Step 2. L is continuous. Let the sequence {y,} such that y, — y in Bg. For all # € J, we obtain

I(Lyn)(@) = (L)

<(a=1) [ ([ £ g(r, y,(1) - g(n, Y(D)lldT) @' (s)ds

S o (T)(s,7)* 2 ’
< (@ = DlIgCyn) = Il [ ([ EPEE—dr) ¢ (s)ds

a

< (@ = DEZEIIgC,yn) — G D)l
Since g is continuous, we have
Ly, — Lyl >0 as n— oo.
Step 3. L(By) is equicontinuous. Lettingy € B anda < 1, < 1, < b, we get
I(Ly)(22) = (LDl <S4 +S2,

where

s 7 a2
f PO o y@)lldrds,

5]
S, = -1 ’ —wg(12,5)
=@ [ e i

1

and

|
S, =(a— 1)f ()0'(S)|e—ww(tz,S) — o @e(18)
a

Since e"™¥2%) < 1, making use of (A3), one obtains

)01—2

Si < (@-DE +xI) [ @(s) [ £ gras

s,a a—1
< (@ = 1)E + KMyl [ ¢/ (5) 252 ds

-1 it
< CDESD (o(1, )" — (11, @)

Thus,
Sy —0 when f — 1.

(7278 y(o) ()]s

(3.5)

(3.6)
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On the other side,

S, =(a- 1)(e—w<t1) - e—ww(tz)) fa " e

Thus,
S, — 0 when £ —#.

From (3.6) and (3.7), the equicontinuity of £(Bg) results immediately.

Step 4. Now, we prove that £ : B — By, satisfies Definition 2.5.
To do this, for every bounded subset J ¢ C(J, X) we define the MNC as

AQ) = supe MAJ(), N> 0.

tey
Next, fixing € > 0, we show the existence of 7 > 0 such that

e<A(U)<e+n = A(LU)<e forany U cC By.

(7278(r,y@0) (9)|}¢' ().

(3.7

(3.8)

(3.9)

Now, let U C By and, using Lemma 2.4, it follows that for a given € > 0. Then there exists a sequence

{yn}72; € U such that, for all 7 € J,
A(LO)®) = A(LON : y € T)) < 28(I(LODONS) + €

Then, since ¢’(-)¢(-,a)*! € L'(3,R), it is possible to choose N such that

4o+ ! 1
N) = ’ a-1 —N(l—s)d -
q(N) SUP F = D) f @' ($)g(s,a)" e §< 5

where o = sup, 0(¢). After that, from

LON® = (@—1) [ eI e (s, y,(5) (s)ds
<(a-1) [ @I g(s,yals))ds,

we obtain

A LODORS) < A ({(a - 1) f '), 1”‘lg’(s,yn(S))alS} )
a n=1
Next, using (A4), for all T € [a, s], we have

A(fe @t D@ < ¢ @t Do @ADL

< (D¢ (T)p(s, 1) 72N sup,, o, € NTA{YL(OFS

< (@)@ (D(s, T 2N A{ya) ).

(3.10)

(3.11)

(3.12)

(3.13)
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Thus, using Lemma 2.5, forall 1 € J, s € [a, ], and T < s, one obtains

A= [ ¢ T gl vusnds) )

IA

W DT Ry ) [ @(s) [ @ (@e(s, 72N drds

IA

LLEAWES) [ @/ (9™ [ @ (s, 1) 2drds
< HDEA W) [ ¢ ()p(s, @) eNods.

Multiplying both sides by e, one obtains

sup,y ¢ VA ({(a l)f (I ls"g(s,yn(s))ds}:j)

(3.14)
< RIS AW supes [[ ¢ ()p(s, @)~ e Nds,
So, by (3.11), (3.13), and (3.14), we have
AGLODIED) < ga®AW1S) < g®AD). (3.15)
Next, by (3.10) and (3.15), fixing € > 0, we have
A(LW)) < 29R)AU) + €.
Then,
A(LW)) < 29(R)AD). (3.16)
Observe that, from the last estimates,
ALU)) < 2gR)AU) < e = AU) < Ok
Letting
_ 1 =29(N)
= —Zq(N) €, (3.17)
one gets

e<AU)<e+n,

which means that £ : By — By satisfies Definition 2.5. Therefore, Theorem 2.2 entails that £ admits
at least one unique fixed point in Bg which is the solution of problem (1.1). O

4. Examples

Example 4.1. Let
Xy i={u= (u,uz, -+ ,ty,=+) : u, > 0asn — oo}

AIMS Mathematics Volume 9, Issue 3, 6411-6423.
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be the Banach space of real sequences converging to zero, equipped by

llul| = sup [u,].
n>1

Consider the following problem posed in X;:

(<D0 + @Dy ) y(0) = g(t, y(1), 1 € 3 := [0, 11,
4.1

¥(0) =y'(0) = (0,0,---,0,--).
Note that, problem (4.1) is a particular case of (1.1), where:
p(t)=¢, la,b]=10,1]
and g : [0, 1] X X; — X, given by

(1 + sin([y,|))

5
@+l + 13t cos(9t)} , 4.2)

n>1

g,y = {

fort e [0’ 1]’ y= {yn}nzl € Xl-
Condition (A1) is satisfied. Moreover, for any u;, u, € X; and ¢ € [0, 1], we have

1
”g(t’ l/ll) - g(ta MZ)” < (e’+l)||u1 - u2||
1
< sllur = ual|.

So, condition (A2) is satisfied with

Thus, with the assistance of Theorem 3.1, problem (4.1) has a unique solution y € C([0, 1], X;).

Xy = {uZ(ubuz,"' JUpy 7)) Z|Un|<°°}

n=1

Example 4.2. Let

be the Banach space with the norm

(o)
ldl = >l
n=1

We recall that the Hausdorff MNC in (X, || - ||) is defined as follows (see [19]):

GRSIE N

Consider the following problem posed in Xj:

s ca~a—1; ~ l/a
(D5 + @ D7) y(1) = g, y(0), 1 €3 := [0,b1,0 < b < (g5)
(4.3)

y(0) =y'(0) = (0,0,---,0,---),

AIMS Mathematics Volume 9, Issue 3, 6411-6423.
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where { = min,e(; 2) al'(@ — 1), and we take
la,b] = [0,b], ¢(2) =1t

and g : [0,h] X X, — X, given by

1 1
g(t,y) = {(5t—+4) (— + In(|y| + 1))}n21 , (4.4)

fort € [0,0], y = {yu}nz1 € Xs.
Evidently, condition (A1) holds and

1
g, Yl < = )(Ilynll +1), yeX.

Thus, condition (A3) holds with &(¢) = «(t) =
any bounded set U C X,, we obtain

and one gets £ = «* = 0.2. On the other side, for

e5'+13)’

1
A(g(t, U)) < mA(U), for any t € [0, b].

Hence, (A4) is verified. Now, we can choose R such that

(@ = Dep(b,a)'é"
[Na+1) -« (a— Db, a) —

This function satisfies condition (A5), and from b < (é)l/a we get
I'a+1)>«"(a— Db, a).

Finally, all the assumptions of Theorem 3.2 are verified, and thus problem (4.3) has at least one solution
y € C([0,b], X5).

5. Conclusions

We concluded that the quantitative study for a class of nonlinear fractional differential equations
involving ¢-Caputo type of order @ € (1,2) in an infinite-dimensional Banach space framework is
achieved. In this context, the results proved in [14, 23] can be regarded as a special case. Our proof
combines results from MNC, Weissinger’s, and Meir-Keeler’s fixed point theorems. In the future,

new work may explore some qualitative aspects of solutions to problem (1.1). Also, for more about
fractional functions, we recommend [23-27].
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