This paper explores multimode function multistability of Cohen-Grossberg neural networks (CGNNs) with Gaussian activation functions and mixed time delays. We start by using the geometrical properties of Gaussian functions. The state space is partitioned into $ 3^\mu $ subspaces, where $ 0\le \mu\le n $. Moreover, through the utilization of Brouwer's fixed point theorem and contraction mapping, some sufficient conditions are acquired to ensure the existence of precisely $ 3^\mu $ equilibria for $ n $-dimensional CGNNs. Meanwhile, there are $ 2^\mu $ and $ 3^\mu-2^\mu $ multimode function stable and unstable equilibrium points, respectively. Ultimately, two illustrative examples are provided to confirm the efficacy of theoretical results.
Citation: Jiang-Wei Ke, Jin-E Zhang, Ji-Xiang Zhang. Multimode function multistability of Cohen-Grossberg neural networks with Gaussian activation functions and mixed time delays[J]. AIMS Mathematics, 2024, 9(2): 4562-4586. doi: 10.3934/math.2024220
This paper explores multimode function multistability of Cohen-Grossberg neural networks (CGNNs) with Gaussian activation functions and mixed time delays. We start by using the geometrical properties of Gaussian functions. The state space is partitioned into $ 3^\mu $ subspaces, where $ 0\le \mu\le n $. Moreover, through the utilization of Brouwer's fixed point theorem and contraction mapping, some sufficient conditions are acquired to ensure the existence of precisely $ 3^\mu $ equilibria for $ n $-dimensional CGNNs. Meanwhile, there are $ 2^\mu $ and $ 3^\mu-2^\mu $ multimode function stable and unstable equilibrium points, respectively. Ultimately, two illustrative examples are provided to confirm the efficacy of theoretical results.
[1] | L. Wan, Q. H. Zhou, Stability analysis of neutral-type Cohen-Grossberg neural networks with multiple time-varying delays, IEEE Access, 8 (2020), 27618–27623. https://doi.org/10.1109/access.2020.2971839 doi: 10.1109/access.2020.2971839 |
[2] | F. H. Zhang, Z. G. Zeng, Multiple Mittag-Leffler stability of delayed fractional-order Cohen-Grossberg neural networks via mixed monotone operator pair, IEEE Trans. Cybernet., 51 (2021), 6333–6344. https://doi.org/10.1109/tcyb.2019.2963034 doi: 10.1109/tcyb.2019.2963034 |
[3] | Y. L. Huang, S. H. Qiu, S. Y. Ren, Z. W. Zheng, Fixed-time synchronization of coupled Cohen-Grossberg neural networks with and without parameter uncertainties, Neurocomputing, 315 (2018), 157–168. https://doi.org/10.1016/j.neucom.2018.07.013 doi: 10.1016/j.neucom.2018.07.013 |
[4] | Y. Wan, J. Cao, G. H. Wen, W. W. Yu, Robust fixed-time synchronization of delayed Cohen-Grossberg neural networks, Neural Netw., 73 (2016), 86–94. https://doi.org/10.1016/j.neunet.2015.10.009 doi: 10.1016/j.neunet.2015.10.009 |
[5] | D. S. Wang, L. H. Huang, L. K. Tang, J. S. Zhuang, Generalized pinning synchronization of delayed Cohen-Grossberg neural networks with discontinuous activations, Neural Netw., 104 (2018), 80–92. https://doi.org/10.1016/j.neunet.2018.04.006 doi: 10.1016/j.neunet.2018.04.006 |
[6] | J. Xiao, Z. G. Zeng, A. L. Wu, S. P. Wen, Fixed-time synchronization of delayed Cohen-Grossberg neural networks based on a novel sliding mode, Neural Netw., 128 (2020), 1–12. https://doi.org/10.1016/j.neunet.2020.04.020 doi: 10.1016/j.neunet.2020.04.020 |
[7] | Z. G. Zeng, W. X. Zheng, Multistability of two kinds of recurrent neural networks with activation functions symmetrical about the origin on the phase plane, IEEE Trans. Neural Netw. Learn. Syst., 24 (2013), 1749–1762. https://doi.org/10.1109/tnnls.2013.2262638 doi: 10.1109/tnnls.2013.2262638 |
[8] | P. Liu, Z. G. Zeng, J. Wang, Multistability of recurrent neural networks with nonmonotonic activation functions and mixed time delays, IEEE Trans. Syst. Man Cybernet. Syst., 46 (2015), 512–523. https://doi.org/10.1109/tsmc.2015.2461191 doi: 10.1109/tsmc.2015.2461191 |
[9] | P. Liu, Z. G. Zeng, J. Wang, Multiple Mittag-Leffler stability of fractional-order recurrent neural networks, IEEE Trans. Syst. Man Cybernet. Syst., 47 (2017), 2279–2288. https://doi.org/10.1109/tsmc.2017.2651059 doi: 10.1109/tsmc.2017.2651059 |
[10] | X. Si, Z. Wang, Y. Fan, X. Huang, H. Shen, Sampled-data-based bipartite leader-follower synchronization of cooperation-competition neural networks via interval-scheduled looped-functions, IEEE Trans. Circuits Syst. I, 70 (2023), 3723–3734. https://doi.org/10.1109/tcsi.2023.3284858 doi: 10.1109/tcsi.2023.3284858 |
[11] | P. Liu, Z. G. Zeng, J. Wang, Multistability analysis of a general class of recurrent neural networks with non-monotonic activation functions and time-varying delays, Neural Netw., 79 (2016), 117–127. https://doi.org/10.1016/j.neunet.2016.03.010 doi: 10.1016/j.neunet.2016.03.010 |
[12] | L. G. Wan, Z. X. Liu, Multiple $\mathcal{O}(t^{-q})$ stability and instability of time-varying delayed fractional-order Cohen-Grossberg neural networks with Gaussian activation functions, Neurocomputing, 454 (2021), 212–227. https://doi.org/10.1016/j.neucom.2021.05.018 doi: 10.1016/j.neucom.2021.05.018 |
[13] | P. Liu, Z. G. Zeng, J. Wang, Multistability of delayed recurrent neural networks with Mexican hat activation functions, Neural Comput., 29 (2017), 423–457. https://doi.org/10.1162/NECO_a_00922 doi: 10.1162/NECO_a_00922 |
[14] | O. Gundogdu, E. Egrioglu, C. H. Aladag, U. Yolcu, Multiplicative neuron model artificial neural network based on Gaussian activation function, Neural Comput. Appl., 27 (2016), 927–935. https://doi.org/10.1007/s00521-015-1908-x doi: 10.1007/s00521-015-1908-x |
[15] | R. Kamimura, Cooperative information maximization with Gaussian activation functions for self-organizingmaps, IEEE Trans. Neural Netw., 17 (2006), 909–918. https://doi.org/10.1109/TNN.2006.875984 doi: 10.1109/TNN.2006.875984 |
[16] | P. Liu, Z. G. Zeng, J. Wang, Complete stability of delayed recurrent neural networks with Gaussian activation functions, Neural Netw., 85 (2017), 21–32. https://doi.org/10.1016/j.neunet.2016.09.006 doi: 10.1016/j.neunet.2016.09.006 |
[17] | P. P. Liu, X. B. Nie, J. L. Liang, J. D. Cao, Multiple Mittag-Leffler stability of fractional-order competitive neural networks with Gaussian activation functions, Neural Netw., 108 (2018), 452–465. https://doi.org/10.1016/j.neunet.2018.09.005 doi: 10.1016/j.neunet.2018.09.005 |
[18] | L. Yao, Z. Wang, X. Huang, Y. Li, Q. Ma, H. Shen, Stochastic sampled-data exponential synchronization of markovian jump neural networks with time-varying delays, IEEE Trans. Neural Netw. Learn. Syst., 34 (2023), 909–920. https://doi.org/10.1109/TNNLS.2021.3103958 doi: 10.1109/TNNLS.2021.3103958 |
[19] | H. L. Li, C. Hu, J. D. Cao, H. J. Jiang, A. Alsaedi, Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays, Neural Netw., 118 (2019), 102–109. https://doi.org/10.1016/j.neunet.2019.06.008 doi: 10.1016/j.neunet.2019.06.008 |
[20] | H. L. Li, H. J. Jiang, J. D. Cao, Global synchronization of fractional-order quaternion-valued neural networks with leakage and discrete delays, Neurocomputing, 385 (2020), 211–219. https://doi.org/10.1016/j.neucom.2019.12.018 doi: 10.1016/j.neucom.2019.12.018 |
[21] | Y. Sheng, H. Zhang, Z. G. Zeng, Stabilization of fuzzy memristive neural networks with mixed time delays, IEEE Trans. Fuzzy Syst., 26 (2017), 2591–2606. https://doi.org/10.1109/tfuzz.2017.2783899 doi: 10.1109/tfuzz.2017.2783899 |
[22] | Z. Wang, Y. Liu, M. Li, X. Liu, Stability analysis for stochastic Cohen-Grossberg neural networks with mixed time delays, IEEE Trans. Neural Netw., 17 (2006), 814–820. https://doi.org/10.1109/tnn.2006.872355 doi: 10.1109/tnn.2006.872355 |
[23] | P. Liu, M. X. Kong, Z. G. Zeng, Projective synchronization analysis of fractional-order neural networks with mixed time delays, IEEE Trans. Cybernet., 52 (2020), 6798–6808. https://doi.org/10.1109/tcyb.2020.3027755 doi: 10.1109/tcyb.2020.3027755 |
[24] | J. D. Cao, D. W. C. H, A general framework for global asymptotic stability analysis of delayed neural networks based on LMI approach, Chaos Solitons Fractals, 24 (2005), 1317–1329. https://doi.org/10.1016/j.chaos.2004.09.063 doi: 10.1016/j.chaos.2004.09.063 |
[25] | Z. Li, G. R. Chen, Global synchronization and asymptotic stability of complex dynamical networks, IEEE Trans. Circuits. Syst. II, 53 (2006), 28–33. https://doi.org/10.1109/TCSII.2005.854315 doi: 10.1109/TCSII.2005.854315 |
[26] | X. Li, S. Song, J. Wu, Exponential stability of nonlinear systems with delayed impulses and applications, IEEE Trans. Automat. Control, 64 (2019), 4024–4034. https://doi.org/10.1109/TAC.2019.2905271 doi: 10.1109/TAC.2019.2905271 |
[27] | Z. Wang, S. Lauria, J. Fang, X. Liu, Exponential stability of uncertain stochastic neural networks with mixed time-delays, Chaos Solitons Fractals, 32 (2007), 62–72. https://doi.org/10.1016/j.chaos.2005.10.061 doi: 10.1016/j.chaos.2005.10.061 |
[28] | L. Zhou, Z. Zhao, Asymptotic stability and polynomial stability of impulsive Cohen-Grossberg neural networks with multi-proportional delays, Neural Process. Lett., 51 (2020), 2607–2627. https://doi.org/10.1007/s11063-020-10209-8 doi: 10.1007/s11063-020-10209-8 |
[29] | W. Yao, C. Wang, Y. Sun, C. Zhou, Robust multimode function synchronization of memristive neural networks with parameter perturbations and time-varying delays, IEEE Trans. Syst. Man Cybernet. Syst., 52 (2022), 260–274. https://doi.org/10.1109/TSMC.2020.2997930 doi: 10.1109/TSMC.2020.2997930 |
[30] | L. G. Wan, Z. X. Liu, Multimode function multistability for Cohen-Grossberg neural networks with mixed time delays, ISA Trans., 129 (2022), 179–192. https://doi.org/10.1016/j.isatra.2021.11.046 doi: 10.1016/j.isatra.2021.11.046 |