Research article Topical Sections

$ KC $-bitopological spaces

  • Received: 20 August 2024 Revised: 29 October 2024 Accepted: 05 November 2024 Published: 13 November 2024
  • MSC : 54A05, 54A10, 54A20, 54D25, 54D30

  • A topological space $ \left(X, \tau \right) $ is called a $ KC $-space when every compact subset of $ X $ is closed. The aim of this paper is to introduce new, namely $ KC $-bitopological spaces and pairwise $ KC $-topological spaces "$ P $-$ KC $-topological spaces". We examined the properties of these concepts and showed the relationships between these concepts and other bitopological spaces. We also discussed the effect of some types of functions on $ KC $-bitopological spaces and pairwise $ KC $-topological spaces. Several examples are discussed, and many well-known theories are generalized.

    Citation: Hamza Qoqazeh, Ali Atoom, Maryam Alholi, Eman ALmuhur, Eman Hussein, Anas Owledat, Abeer Al-Nana. $ KC $-bitopological spaces[J]. AIMS Mathematics, 2024, 9(11): 32182-32199. doi: 10.3934/math.20241545

    Related Papers:

  • A topological space $ \left(X, \tau \right) $ is called a $ KC $-space when every compact subset of $ X $ is closed. The aim of this paper is to introduce new, namely $ KC $-bitopological spaces and pairwise $ KC $-topological spaces "$ P $-$ KC $-topological spaces". We examined the properties of these concepts and showed the relationships between these concepts and other bitopological spaces. We also discussed the effect of some types of functions on $ KC $-bitopological spaces and pairwise $ KC $-topological spaces. Several examples are discussed, and many well-known theories are generalized.



    加载中


    [1] J. Kelly, Bitopological spaces, Proc. London Math. Soc., 13 (1963), 71–89. https://doi.org/10.1112/plms/s3-13.1.71 doi: 10.1112/plms/s3-13.1.71
    [2] J. W. Kim, Pairwise compactness, Publ. Math. Debrecen, 10 (1968), 87–90. https://doi.org/10.5486/pmd.1968.15.1-4.12 doi: 10.5486/pmd.1968.15.1-4.12
    [3] P. Fletcher, H. Hoyle, C. Patty, The comparison of topologies, Duke Math. J., 36 (1969), 325–331. https://doi.org/10.1215/S0012-7094-69-03641-2 doi: 10.1215/S0012-7094-69-03641-2
    [4] M. Datta, Projective bitopological spaces, J. Aust. Math. Soc., 13 (1972), 327–334. https://doi.org/10.1017/S1446788700013744 doi: 10.1017/S1446788700013744
    [5] I. Cooke, L. Reilly, On bitopological compactness, J. London Math. Soc., 4 (1975), 518–522. https://doi.org/10.1112/jlms/s2-9.4.518 doi: 10.1112/jlms/s2-9.4.518
    [6] A. Fora, H. Hdeib, On pairwise Lindelöf spaces, Revista Colomb. Mat., 17 (1983), 37–57.
    [7] A. Zarif, F. Razzak, $COKC$-topology, Tishreen Univ. J. Basic Sci. Ser., 33 (2011), 193–199.
    [8] R. Ali, Minimal $KC$-spaces and minimal $LC$-spaces, Tishreen Univ. J. Stud. Sci. Res., 28 (2006), 147–154.
    [9] A. Bella, C. Costantini, Minimal $KC$ spaces are compact, Topol. Appl., 13 (2008), 1426–1429. https://doi.org/10.1016/j.topol.2008.04.005 doi: 10.1016/j.topol.2008.04.005
    [10] H. A. Künzi, D. Zypen, Maximal (sequentially) compact topologies, Categor. Structers Appl., 2004,173–187. https://doi.org/10.1142/9789812702418_0013 doi: 10.1142/9789812702418_0013
    [11] A. Zarif, F. Razzak, $KC$-spaces and minimal $KC$-spaces, Tishreen Univ. J. Basic Sci. Ser., 32 (2010), 79–85.
    [12] A. Wilansky, Between $T_{1}$ and $T_{2}$, Amer. Math. Month., 3 (1967), 261–266. https://doi.org/10.1080/00029890.1967.11999950 doi: 10.1080/00029890.1967.11999950
    [13] H. Hdeib, A note on $L$-closed spaces, Quest. Answer Gen. Topol., 6 (1988), 67–72.
    [14] S. Maheshwari, R. Prasad, Some new separations axioms, Ann. Soc. Sci. Bruxelles Ser. I, 89 (1975), 395–402.
    [15] T. Vidalis, Minimal $KC$-spaces are countably compact, Comment. Math. Univ. Carol., 45 (2004), 543–547. https://doi.org/10338.dmlcz/119481
    [16] O. Alas, M. Tkachenko, V. Tkachuk, R. Wilson, The $FDS$-property and spaces in which compact sets are closed, Sci. Math. Japonicae, 61 (2005), 473–480.
    [17] O. Alas, R. Wilson, Spaces in which compact sets are closed and the lattic of $T_{1}$-topologies on a set, Comment. Math. Univ. Carol., 43 (2002), 641–652. http://doi.org/10338.dmlcz/119353
    [18] O. Alas, R. Wilson, Weaker connected Hausdorff topologies on spaces with a $\sigma$-locally finite base, Houston J. Math., 31 (2005), 427–439.
    [19] O. Alas, R. Wilson, Minimal properties between $T_{1}$ and $T_{2}$, Houston J. Math., 32 (2006), 493–504.
    [20] J. Oprsal, Minimalni $KC$ prostory, Ph. D thesis, Univerzita Karlova, 2009. https://doi.org/20.500.11956/27483
    [21] A. Bella, C. Costantini, Further remarks on $KC$ and related spaces, Comment. Math. Univ. Carol., 52 (2011), 417–426. https://doi.org/10338.dmlcz/141612
    [22] H. Ali, H. Saleh, On $K(SC)$ and $L(SC)$-spaces, Al-Mustansiriyah J. Sci., 25 (2014), 125–132.
    [23] H. Ali, New forms of $KC$ and $LC$-spaces, Al-Mustansiriyah J. Sci., 5 (2011), 321–327.
    [24] R. Ali, On weaker forms of $LC$-spaces, Iraqi Al-Khwarizmi Soc., 1 (2017), 62–67.
    [25] R. Ali, A. Abker, On $MKC$-spaces, $MLC$-spaces and $Mh$-spaces, J. Al-Qadisiyah Comput. Math., 7 (2015), 72–84. https://doi.org/10.29304/jqcm.2015.7.1 doi: 10.29304/jqcm.2015.7.1
    [26] A. Zarif, A. Wraid, A study in $\alpha$-compact topological spaces and $\alpha$-$kc$-spaces, Tishreen Univ. J. Basic Sci. Ser., 37 (2015), 153–161.
    [27] H. Hdeib, C. Pareek, On spaces in which lindlöf sets are closed, Quest. Answer Gen. Topol., 4 (1986), 986.
    [28] E. Almuhor, H. Hdeib, On pairwise $L$-closed spaces in bitopological spaces, J. Semigroup Theory Appl., 2018 (2018), 7. https://doi.org/10.28919/jsta/3668 doi: 10.28919/jsta/3668
    [29] N. Nadhim, H. Ali, R. Majeed, Strong and weak forms of $\hat{I} \frac{1}{4}$-$Kc$-spaces, Iraqi J. Sci., 61 (2020), 1080–1088. https://doi.org/10.24996/ijs.2020.61.5.16 doi: 10.24996/ijs.2020.61.5.16
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(188) PDF downloads(30) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog