Research article Special Issues

Assisting the decision making-A generalization of choice models to handle the binary choices

  • Received: 04 July 2022 Revised: 17 September 2022 Accepted: 25 September 2022 Published: 15 November 2022
  • MSC : 74H10, 74B05, 35Q74, 35J05, 33C55

  • This research fundamentally aims at providing a generalized framework to assist the launch of paired comparison models while dealing with discrete binary choices. The purpose is served by exploiting the fundaments of the exponential family of distributions. The proposed generalization is proved to cater to seven paired comparison models as members of this newly developed mechanism. The legitimacy of the devised scheme is demonstrated through rigorous simulation-based investigation as well as keenly persuaded empirical evaluations. A detailed analysis, covering a wide range of parametric settings, through the launch of Gibbs Sampler—a notable extension of Markov Chain Monte Carlo methods, is conducted under the Bayesian paradigm. The outcomes of this research substantiate the legitimacy of the devised general structure by not only successfully retaining the preference ordering but also by staying consistent with the established theoretical framework of comparative models.

    Citation: Muhammad Arshad, Salman A. Cheema, Juan L.G. Guirao, Juan M. Sánchez, Adrián Valverde. Assisting the decision making-A generalization of choice models to handle the binary choices[J]. AIMS Mathematics, 2023, 8(2): 3083-3100. doi: 10.3934/math.2023159

    Related Papers:

  • This research fundamentally aims at providing a generalized framework to assist the launch of paired comparison models while dealing with discrete binary choices. The purpose is served by exploiting the fundaments of the exponential family of distributions. The proposed generalization is proved to cater to seven paired comparison models as members of this newly developed mechanism. The legitimacy of the devised scheme is demonstrated through rigorous simulation-based investigation as well as keenly persuaded empirical evaluations. A detailed analysis, covering a wide range of parametric settings, through the launch of Gibbs Sampler—a notable extension of Markov Chain Monte Carlo methods, is conducted under the Bayesian paradigm. The outcomes of this research substantiate the legitimacy of the devised general structure by not only successfully retaining the preference ordering but also by staying consistent with the established theoretical framework of comparative models.



    加载中


    [1] S. Esposito, C. Pelullo, E. Agozzino, F. Attena, A paired-comparison intervention to improve quality of medical records, J. Hosp. Adm., 2 (2013), 91–96. https://doi.org/10.5430/jha.v2n3p91 doi: 10.5430/jha.v2n3p91
    [2] B. M. Ringham, T. A. Alonzo, J. T. Brinton, S. M. Kreidler, A. Munjal, K. E. Muller, et al., Reducing decision errors in the paired comparison of the diagnostic accuracy of screening tests with Gaussian outcomes, BMC Med. Res. Methodol., 14 (2014), 37. https://doi.org/10.1186/1471-2288-14-37 doi: 10.1186/1471-2288-14-37
    [3] M. E. Oakes, C. S. Slotterback, The good, the bad, and the ugly: Characteristics used by young, middle-aged, and older men and women, dieters and non-dieters to judge healthfulness of foods, Appetite, 38 (2002), 91–97. https://doi.org/10.1006/appe.2001.0444 doi: 10.1006/appe.2001.0444
    [4] E. Calderón, A. Rivera-Quintero, A., Xia, Y. O. Angulo, M. O'Mahony, The triadic preference test, Food Qual. Prefer., 39 (2015), 8–15. https://doi.org/10.1016/j.foodqual.2014.05.016 doi: 10.1016/j.foodqual.2014.05.016
    [5] R. Dittrich, R. Hatzinger, W. Katzenbeisser, Modelling dependencies in paired comparison data: A log-linear approach, Comput. Stat. Data An., 40 (2002), 39–57. https://doi.org/10.1016/S0167-9473(01)00106-2 doi: 10.1016/S0167-9473(01)00106-2
    [6] J. Green-Armytage, Cardinal-weighted pairwise comparison. Voting matters, 19 (2004), 6–13.
    [7] G. Masarotto, C. Varin, The ranking lasso and its application to sport tournaments, Ann. Appl. Stat., 6 (2012), 1949–1970. https://doi.org/10.1214/12-AOAS581 doi: 10.1214/12-AOAS581
    [8] M. Cattelan, C. Varin, D. Firth, Dynamic Bradley-Terry modelling of sports tournaments, J. R. Stat. Soc. C-Appl., 62 (2013), 135–150. https://doi.org/10.1111/j.1467-9876.2012.01046.x doi: 10.1111/j.1467-9876.2012.01046.x
    [9] M. R. Johnson, M. Middleton, M. Brown, T. Burke, T. Barnett, Utilization of a paired comparison analysis framework to inform decision-making and the prioritization of projects and initiatives in a highly matrixed clinical research program, J. Res. Admin., 1 (2019), 46–65.
    [10] M. Arshad, T. Kifayat, J. L. G. Guirao, J. M. Sánchez, A. Valverde, Using Maxwell Distribution to handle Selector's indecisiveness in choice data: A new latent Bayesian choice model, Appl. Sci., 12 (2022), 6337. https:// doi.org/10.3390/app12136337
    [11] B. A. Younger, S. D. Furrer, A comparison of visual familiarization and object‐examining measures of categorization in 9‐month‐old infants, Infancy, 4 (2003), 327–348. https://doi.org/10.1207/S15327078IN0403_02 doi: 10.1207/S15327078IN0403_02
    [12] S. Choisel, F. Wickelmaier, Evaluation of multichannel reproduced sound: Scaling auditory attributes underlying listener preference, J. Acoust. Soc. Am., 121 (2007), 388–400. https://doi.org/10.1121/1.2385043 doi: 10.1121/1.2385043
    [13] T. A. Mazzuchi, W. G. Linzey, A. Bruning, A paired comparison experiment for gathering expert judgment for an aircraft wiring risk assessment, Reliab. Eng. Syst. Safe., 93 (2008), 722–731.
    [14] A. M. Amlani, E. C. Schafer, Application of paired-comparison methods to hearing aids, Trends Amplif., 13 (2009), 241–259.
    [15] D. Beaudoin, T. Swartz, A computationally intensive ranking system for paired comparison data, Oper. Res. Perspect., 5 (2018). 105–112. https://doi.org/10.1016/j.orp.2018.03.002 doi: 10.1016/j.orp.2018.03.002
    [16] Y. T. Sung, J. S. Wu, The visual analogue scale for rating, ranking and paired-comparison (VAS-RRP): A new technique for psychological measurement, Behavior Res. Methods, 50 (2018), 1694–1715. https://doi.org/10.3758/s13428-018-1041-8 doi: 10.3758/s13428-018-1041-8
    [17] S. A. Cheema, I. L. Hudson, T. Kifayat, M. Shafqat, Kalim-ullah, A. Hussain, A New Maxwell Paired Comparison Model: Application to a Study of the Effect of Nicotine Levels on Cigarette Brand Choices, MODSIM 2019, Australia.
    [18] S. Liu, C. V. Spiridonidis, M. Abdulrazzqa, Cognitive computational model using machine learning algorithm in artificial intelligence environment., Appl. Math. Nonlinear Sci., 7 (2022), 803–814. https://doi.org/10.2478/amns.2021.2.00065 doi: 10.2478/amns.2021.2.00065
    [19] Y. S. Liu, Z. Z. Qiu, X. C. Zhan, H. N. Liu, H. N. Gong, Study of statistical damage constitutive model of layered composite rock under triaxial compression, Appl. Math. Nonlinear Sci., 6 (2021), 299–308. https://doi.org/10.2478/amns.2021.2.00048 doi: 10.2478/amns.2021.2.00048
    [20] X. Qi, H. Li, B. Chen, G. Altenbek, A prediction model of urban counterterrorism based on stochastic strategy, Appl. Math. Nonlinear Sci., 6 (2021), 263–268. https://doi.org/10.2478/amns.2021.2.00007 doi: 10.2478/amns.2021.2.00007
    [21] W. Q. Duan, Z. Khan, M. Gulistan, A. Khurshid, Neutrosophic exponential distribution: Modeling and applications for complex data analysis, Complexity, (2021). https://doi.org/10.1155/2021/5970613 doi: 10.1155/2021/5970613
    [22] R. Yan, W. Tong, C. Jiaona, H. A. Alteraz, H. M. Mohamed, Evaluation of factors influencing energy consumption in water injection system based on entropy Weight-Grey correlation method, Appl. Math. Nonlinear Sci., 6 (2021), 269–280. https://doi.org/10.2478/amns.2021.2.00044 doi: 10.2478/amns.2021.2.00044
    [23] W. Jedidi, Local asymptotic normality complexity arising in a parametric statistical levy model, Complexity, (2021). https://doi.org/10.1155/2021/3143324 doi: 10.1155/2021/3143324
    [24] Y. Lin, S. Li, K. Jia, K. L. Kingsley, The research of power allocation algorithm with lower computational complexity for non-orthogonal multiple access, Appl. Math. Nonlinear Sci., 6 (2021), 79–88. https://doi.org/10.2478/amns.2021.1.00027 doi: 10.2478/amns.2021.1.00027
    [25] Y. Zhong, G. Ruan, E. Abozinadah, J. Jiang, Least-squares method and deep learning in the identification and analysis of Name-plates of power equipment, Appl. Math. Nonlinear Sci., 7 (2022), 103–111. https://doi.org/10.2478/amns.2021.1.00055 doi: 10.2478/amns.2021.1.00055
    [26] X. Qiu, L. Yuan, X. Zhou, MCMC sampling estimation of Poisson-Dirichlet process mixture models, Math. Probl. Eng., (2021). https://doi.org/10.1155/2021/6618548 doi: 10.1155/2021/6618548
    [27] L. Liu, M. Niu, D. Zhang, L. Liu, D. Frank, Optimal allocation of microgrid using a differential multi-agent multi-objective evolution algorithm, Appl. Math. Nonlinear Sci., 6 (2021), 111–121.
    [28] C. Liu, Precision algorithms in second-order fractional differential equations, Appl. Math. Nonlinear Sci., 7 (2021), 155–164. https://doi.org/10.2478/amns.2021.2.00157 doi: 10.2478/amns.2021.2.00157
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1591) PDF downloads(81) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog